Publications by authors named "Jessica Avivar"

Tc is an artificial beta emitter widely used in nuclear medicine for diagnostic tests. A fully automated and rapid system for Tc monitoring is introduced with the aim to improve hospital residues management. This system can also be helpful for controlling urban wastewater.

View Article and Find Full Text PDF

The determination of iron and copper exploiting a microsequential injection lab-on-valve system with online spectrophotometric detection is described. A new, environmental friendly 3-hydroxy-4-pyridinone chelator, functionalized with a polyethylene glycol chain (MRB12) to improve water solubility, was used for iron determination. For copper determination, 1-(2-pyridylazo)-2-naphthol (PAN) was used.

View Article and Find Full Text PDF

The development of automatic analyzers based on flow techniques involves the use and continuous innovation of fluidic devices. New trends tend toward miniaturization of sophisticated fluidic platforms requiring continuous advances in this field. The availability of a mechanic and electronic workshop together with the know-how to build new fluidic devices provides the tools for the creation of innovative instrumentation and stimulates the creativity of analytical chemists.

View Article and Find Full Text PDF

Herein, we propose for the first time the use of magnetic porous carbons (MPCs) derived from zeolitic imidazolate frameworks (ZIFs) for the automated in-syringe magnetic dispersive micro-solid phase extraction (D-μ-SPE) of environmental pollutants prior to their analysis using GC-MS. MPCs with dual porosity are obtained from the direct combustion of the ZIF-67, obtaining robust and magnetic porous carbons on the micrometer scale. As proof of concept, this material has been applied for the automated D-μ-SPE of estrogens (estrone, 17β-estradiol, and 17α-ethynylestradiol) cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA).

View Article and Find Full Text PDF

A novel online approach involving in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction and derivatization coupled to gas chromatography-mass spectrometry has been developed for the determination of seven UV filters extensively used in cosmetic products in environmental water samples. The effect of parameters such as the type and volume of extraction solvent, dispersive solvent and derivatization agent, pH, ionic strength and stirring time, was studied using multivariate experimental design. Extraction, derivatization and preconcentration were simultaneously performed using acetone as dispersive solvent, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as derivatization agent and trichloroethylene as extraction solvent.

View Article and Find Full Text PDF

An environmental friendly and fully automated method using in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography has been developed for the determination of UV filters in environmental water samples. The main "green" features on this method are the use of an ionic liquid as extracting solvent, avoiding the use of chlorinated solvents, and the on-line microextraction, preconcentration, separation and detection minimizing the use of reagents and so the waste generation. After sample treatment, 20 µL of the organic droplet was injected onto the HPLC-UV system.

View Article and Find Full Text PDF

A new procedure for the extraction, preconcentration and simultaneous determination of the estrogens most used in contraception pharmaceuticals (estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol), cataloged as Contaminants of Emergent Concern by the Environmental Protection Agency of the United States (US-EPA), is proposed. The developed system performs an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (in-syringe-MSA-DLLME) prior derivatization and gas chromatography (GC-MS). Different extraction (carbon tetrachloride, ethyl acetate, chloroform and trichloroethylene) and disperser solvents (acetone, acetonitrile and methanol) were tested.

View Article and Find Full Text PDF

Parabens are widely used in dairy products, such as in cosmetics and personal care products. Thus, in this work a multi-syringe chromatographic (MSC) system is proposed for the first time for the determination of four parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) in cosmetics and personal care products, as a simpler, practical, and low cost alternative to HPLC methods. Separation was achieved using a 5mm-long precolumn of reversed phase C18 and multi-isocratic separation, i.

View Article and Find Full Text PDF

A new approach exploiting in-syringe dispersive liquid-liquid microextraction (DLLME) for (99)Tc extraction and preconcentration from biological samples, i.e., urine and saliva, and liquid residues from treated patients is presented.

View Article and Find Full Text PDF

A fully automated in-syringe (IS) magnetic stirring assisted (MSA) liquid-liquid microextraction (LLME) method for uranium(VI) determination was developed, exploiting a long path-length liquid waveguide capillary cell (LWCC) with spectrophotometric detection. On-line extraction of uranium was performed within a glass syringe containing a magnetic stirrer for homogenization of the sample and the successive reagents: cyanex-272 in dodecane as extractant, EDTA as interference eliminator, hydrochloric acid to make the back-extraction of U(VI) and arsenazo-III as chromogenic reagent to accomplish the spectrophotometric detection at 655 nm. Magnetic stirring assistance was performed by a specially designed driving device placed around the syringe body creating a rotating magnetic field in the syringe, and forcing the rotation of the stirring bar located inside the syringe.

View Article and Find Full Text PDF

An automatic phenolic compounds analyzer is presented. The system performs online magnetic-stirring-assisted dispersive liquid-liquid microextraction before multisyringe chromatography (MSC) using a monolithic Chromolith Flash RP-18e column. The extraction behavior of the following phenolic pollutants: phenol, 2-nitrophenol, 4-nitrophenol, 2-chlorophenol, 2,4-diclorophenol, and 2,4,6-trichlorophenol, has been studied.

View Article and Find Full Text PDF

A new, fast, automated and inexpensive sample pre-treatment method for (99)Tc determination by inductively coupled plasma-mass spectrometry (ICP-MS) detection is presented. The miniaturized approach is based on a lab-on-valve (LOV) system, allowing automatic separation and preconcentration of (99)Tc. Selectivity is provided by the solid phase extraction system used (TEVA resin) which retains selectively pertechnetate ion in diluted nitric acid solution.

View Article and Find Full Text PDF

A new automated, sensitive, and fast system for the simultaneous online isolation and preconcentration of lead and strontium by sorption on a microcolumn packed with Sr-resin using an inductively coupled plasma mass spectrometry (ICP-MS) detector was developed, hyphenating lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA). Pb and Sr are directly retained on the sorbent column and eluted with a solution of 0.05 mol L(-1) ammonium oxalate.

View Article and Find Full Text PDF

(99m)Tc (6.0067 h half-life) is an artificial radionuclide largely used in diagnostic medicine. Its daughter (99)Tc is a beta emitter of great concern because of its long half-life (2.

View Article and Find Full Text PDF

A novel lab-on-valve system has been developed for strontium determination in environmental samples. Miniaturized lab-on-valve system potentially offers facilities to allow any kind of chemical and physical processes, including fluidic and microcarrier bead control, homogenous reaction and liquid-solid interaction. A rapid, inexpensive and fully automated method for the separation and preconcentration of total and radioactive strontium, using a solid phase extraction material (Sr-Resin), has been developed.

View Article and Find Full Text PDF

The hyphenation of lab-on-valve (LOV) and multisyringe flow analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell (LWCC), allows the spectrophotometric determination of uranium in different types of environmental sample matrices, without any manual pre-treatment, and achieving high selectivity and sensitivity levels. On-line separation and preconcentration of uranium is carried out by means of UTEVA resin. The potential of the LOV-MSFIA makes possible the fully automation of the system by the in-line regeneration of the column.

View Article and Find Full Text PDF

A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin.

View Article and Find Full Text PDF

Rapid and fully automated multisyringe flow-injection analysis (MSFIA) with a multi-pumping flow system (MPFS) coupled to a long path-length liquid waveguide capillary cell (LWCC) is proposed for the determination of uranium(VI) at ultra trace levels. On-line separation and pre-concentration of uranium is carried out by means of a TRU resin. After elution, uranium(VI) is spectrophotometrically detected after reaction with arsenazo-III.

View Article and Find Full Text PDF