Publications by authors named "Jessica Ausborn"

Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body.

View Article and Find Full Text PDF

The brain exhibits remarkable neuronal diversity which is critical for its functional integrity. From the sheer number of cell types emerging from extensive transcriptional, morphological, and connectome datasets, the question arises of how the brain is capable of generating so many unique identities. 'Terminal selectors' are transcription factors hypothesized to determine the final identity characteristics in post-mitotic cells.

View Article and Find Full Text PDF

Synapses are often precisely organized on dendritic arbors, yet the role of synaptic topography in dendritic integration remains poorly understood. Utilizing electron microscopy (EM) connectomics we investigate synaptic topography in looming circuits, focusing on retinotopically tuned visual projection neurons (VPNs) that synapse onto descending neurons (DNs). Synapses of a given VPN type project to non-overlapping regions on DN dendrites.

View Article and Find Full Text PDF

Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle.

View Article and Find Full Text PDF

Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body.

View Article and Find Full Text PDF

Studying the neural components regulating movement in human locomotion is obstructed by the inability to perform invasive experimental recording in the human neural circuits. Neuromechanical simulations can provide insights by modeling the locomotor circuits. Past neuromechanical models proposed control of locomotion either driven by central pattern generators (CPGs) with simple sensory commands or by a purely reflex-based network regulated by state-machine mechanisms, which activate and deactivate reflexes depending on the detected gait cycle phases.

View Article and Find Full Text PDF

Spatially invariant feature detection is a property of many visual systems that rely on visual information provided by two eyes. However, how information across both eyes is integrated for invariant feature detection is not fully understood. Here, we investigated spatial invariance of looming responses in descending neurons (DNs) of Drosophila melanogaster.

View Article and Find Full Text PDF

Mammalian locomotion is generated by central pattern generators (CPGs) in the spinal cord, which produce alternating flexor and extensor activities controlling the locomotor movements of each limb. Afferent feedback signals from the limbs are integrated by the CPGs to provide adaptive control of locomotion. Responses of CPG-generated neural activity to afferent feedback stimulation have been previously studied during fictive locomotion in immobilized cats.

View Article and Find Full Text PDF

Neuronal circuits in the spinal cord are essential for the control of locomotion. They integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. For several decades, computational modeling has complemented experimental studies by providing a mechanistic rationale for experimental observations and by deriving experimentally testable predictions.

View Article and Find Full Text PDF

In vertebrates, specific command centers in the brain can selectively drive slow-explorative or fast-speed locomotion. However, it remains unclear how the locomotor central pattern generator (CPG) processes descending drive into coordinated locomotion. Here, we reveal, in adult zebrafish, a logic of the V2a interneuron rhythm-generating circuits involving recurrent and hierarchical connectivity that acts in tandem with pacemaker properties to provide an ignition and gear-shift mechanism to start locomotion and change speed.

View Article and Find Full Text PDF

A series of recent studies identified key structures in the mesencephalic locomotor region and the caudal brainstem of mice involved in the initiation and control of slow (exploratory) and fast (escape-type) locomotion and gait. However, the interactions of these brainstem centers with each other and with the spinal locomotor circuits are poorly understood. Previously we suggested that commissural and long propriospinal interneurons are the main targets for brainstem inputs adjusting gait (Danner et al.

View Article and Find Full Text PDF

The circuit organization within the mammalian brainstem respiratory network, specifically within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes, and the roles of these circuits in respiratory pattern generation are continuously debated. We address these issues with a combination of optogenetic experiments and modeling studies. We used transgenic mice expressing channelrhodopsin-2 under the VGAT-promoter to investigate perturbations of respiratory circuit activity by site-specific photostimulation of inhibitory neurons within the pre-BötC or BötC.

View Article and Find Full Text PDF

The spinal locomotor central pattern generator (CPG) generates rhythmic activity with alternating flexion and extension phases. This rhythmic pattern is likely to result from inhibitory interactions between neural populations representing flexor and extensor half-centers. However, it is unclear whether the flexor-extensor CPG has a quasi-symmetric organization with both half-centers critically involved in rhythm generation, features an asymmetric organization with flexor-driven rhythmogenesis, or comprises a pair of intrinsically rhythmic half-centers.

View Article and Find Full Text PDF

Animals constantly make behavioral choices to facilitate moving efficiently through their environment. When faced with a threat, animals make decisions in the midst of other ongoing behaviors through a context-dependent integration of sensory stimuli. In vertebrates, the mechanisms underlying behavioral selection are poorly understood.

View Article and Find Full Text PDF

The myelination of axons by oligodendrocytes markedly affects CNS function, but how this is regulated by neuronal activity in vivo is not known. We found that blocking synaptic vesicle release impaired CNS myelination by reducing the number of myelin sheaths made by individual oligodendrocytes during their short period of formation. We also found that stimulating neuronal activity increased myelin sheath formation by individual oligodendrocytes.

View Article and Find Full Text PDF

Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear.

View Article and Find Full Text PDF

Neural networks in the spinal cord can generate locomotion in the absence of rhythmic input from higher brain structures or sensory feedback because they contain an intrinsic source of excitation. However, the molecular identity of the spinal interneurons underlying the excitatory drive within the locomotor circuit has remained unclear. Using optogenetics, we show that activation of a molecularly defined class of ipsilateral premotor interneurons elicits locomotion.

View Article and Find Full Text PDF

In vertebrates, spinal circuits drive rhythmic firing in motoneurons in the appropriate sequence to produce locomotor movements. These circuits become active early during development and mature gradually to acquire the flexibility necessary to accommodate the increased behavioral repertoire of adult animals. The focus here is to elucidate how different pools of motoneurons are organized and recruited and how membrane properties contribute to their mode of operation.

View Article and Find Full Text PDF

Neural networks in the spinal cord transform signals from the brain into coordinated locomotor movements. An optimal adjustment of the speed of locomotion entails a precise order of recruitment of interneurons underlying excitation within these networks. However, the mechanisms encoding the recruitment threshold of excitatory interneurons have remained unclear.

View Article and Find Full Text PDF

Neural circuits in the spinal cord transform instructive signals from the brain into well-coordinated locomotor movements by virtue of rhythm-generating components. Although evidence suggests that excitatory interneurons are the essence of locomotor rhythm generation, their molecular identity and the assessment of their necessity have remained unclear. Here we show, using larval zebrafish, that V2a interneurons represent an intrinsic source of excitation necessary for the normal expression of the locomotor rhythm.

View Article and Find Full Text PDF

Motor behavior is generated by specific neural circuits. Those producing locomotion are located in the spinal cord, and their activation depends on descending inputs from the brain or on sensory inputs. In this study, we have used an in vitro brainstem-spinal cord preparation from adult zebrafish to localize a region where stimulation of descending inputs can induce sustained locomotor activity.

View Article and Find Full Text PDF

Locomotor movements are coordinated by a network of neurons that produces sequential muscle activation. Different motoneurons need to be recruited in an orderly manner to generate movement with appropriate speed and force. However, the mechanisms governing recruitment order have not been fully clarified.

View Article and Find Full Text PDF

In many rhythmic behaviors, phasic sensory feedback modifies the motor pattern. This modification is assumed to depend on feedback sign (positive vs. negative).

View Article and Find Full Text PDF

We use a modeling approach to examine ideas derived from physiological network analyses, pertaining to the switch of a motor control network between two opposite control modes. We studied the femur-tibia joint control system of the insect leg, and its switch between resistance reflex in posture control and "active reaction" in walking, both elicited by the same sensory input. The femur-tibia network was modeled by fitting the responses of model neurons to those obtained in animals.

View Article and Find Full Text PDF

The sensory system plays a key role in the generation of behavior by providing the nervous system with information about the environment and feedback about body movements such that motor output can continuously be adapted to changing circumstances. Although the effects of sensory organs on nervous system function have been demonstrated in many systems, the impact of sensory activity has rarely been studied in conditions in which motor output and sensory activity can interact as they do in behaving animals. In such situations, emergent properties may surface and govern the characteristics of the motor system.

View Article and Find Full Text PDF