Background: Root growth is most commonly determined with the destructive soil core method, which is very labor-intensive and destroys the plants at the sampling spots. The alternative minirhizotron technique allows for root growth observation throughout the growing season at the same spot but necessitates a high-throughput image analysis for being labor- and cost-efficient. In this study, wheat root development in agronomically varied situations was monitored with minirhizotrons over the growing period in two years, paralleled by destructive samplings at two dates.
View Article and Find Full Text PDFThe lower yield of wheat grown after wheat (second wheat) compared with the first wheat after a break crop is frequently attributed to fungal disease occurrence, but has also been found without visible disease infection; thus, other factors might be responsible for the lower yield of the second wheat. The aims of this study were to analyze the effects of growing wheat as first and second wheat after oilseed rape, as well as monoculture in a long-term field experiment over three years on (i) aboveground biomass formation, root development and nutrient acquisition during the growing season, (ii) take-all occurrence, and (iii) grain yield and yield components. Subsoil root length density of winter wheat was significantly higher after oilseed rape as pre-crop than after wheat, which was independent of take-all occurrence.
View Article and Find Full Text PDF