Background: Diagnosing urinary tract infections (UTIs) in children in the emergency department (ED) is challenging due to the variable clinical presentations and difficulties in obtaining a urine sample free from contamination. Clinicians need to weigh a range of observations to make timely diagnostic and management decisions, a difficult task to achieve without support due to the complex interactions among relevant factors. Directed acyclic graphs (DAG) and causal Bayesian networks (BN) offer a way to explicitly outline the underlying disease, contamination and diagnostic processes, and to further make quantitative inference on the event of interest thus serving as a tool for decision support.
View Article and Find Full Text PDF