An analytical methodology, involving the use of a combination of second harmonic generation (SHG) and linear dichroism, was utilized to probe the molecular orientation and angular distribution of a model liquid crystal (LC) alignment layer. In order to determine which film structure would be best suited for use as an alignment layer, the azo dye o-methyl red (MR) was covalently bound to a glass substrate using both monofunctional and trifunctional silane chemistry. The influence of solvent on the orientation and angular distribution of both thin films was also investigated.
View Article and Find Full Text PDFThe sensitivity of optical molecular orientation measurements to assumptions regarding thin film refractive index was investigated. Specifically, the influence of the interfacial refractive index on second harmonic generation (SHG) and linear dichroism measurements made in a total internal reflection (TIR) geometry was probed for five distinct molecular systems. The five molecular thin films ranged from weakly adsorbed species in equilibrium with solution to covalently bound molecules.
View Article and Find Full Text PDF