Publications by authors named "Jessica A Dequach"

This study evaluated the safety and feasibility of transendocardial injections of VentriGel, a cardiac extracellular matrix hydrogel, in early and late post-myocardial infarction (MI) patients with left ventricular (LV) dysfunction. VentriGel was delivered in 15 patients with moderate LV dysfunction (25% ≤ LV ejection fraction ≤ 45%) who were between 60 days to 3 years post-MI and were revascularized by percutaneous coronary intervention. The primary endpoints were incidence of adverse events and abnormal clinical laboratory results.

View Article and Find Full Text PDF

Heart failure (HF) after myocardial infarction (MI) is a leading cause of death in the western world with a critical need for new therapies. A previously developed injectable hydrogel derived from porcine myocardial matrix (PMM) has had successful results in both small and large animal MI models. In this study, we sought to evaluate the impact of tissue source on this biomaterial, specifically comparing porcine and human myocardium sources.

View Article and Find Full Text PDF

New therapies are needed to prevent heart failure after myocardial infarction (MI). As experimental treatment strategies for MI approach translation, safety and efficacy must be established in relevant animal models that mimic the clinical situation. We have developed an injectable hydrogel derived from porcine myocardial extracellular matrix as a scaffold for cardiac repair after MI.

View Article and Find Full Text PDF

Myocardial infarction (MI) produces a collagen scar, altering the local microenvironment and impeding cardiac function. Cell therapy is a promising therapeutic option to replace the billions of myocytes lost following MI. Despite early successes, chronic function remains impaired and is likely a result of poor cellular retention, proliferation, and differentiation/maturation.

View Article and Find Full Text PDF

Peripheral artery disease (PAD) currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI), which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat.

View Article and Find Full Text PDF

The extracellular matrix (ECM) plays important roles in influencing cellular behavior such as attachment, differentiation, and proliferation. However, in conventional culture and tissue engineering strategies, single proteins are frequently utilized, which do not mimic the complex extracellular microenvironment seen in vivo. In this study we report a method to decellularize brain tissue using detergents.

View Article and Find Full Text PDF

Cardiovascular disease remains the leading cause of death in the Western world and myocardial infarction is one of the primary facets of this disease. The limited natural self-renewal of cardiac muscle following injury and restricted supply of heart transplants has encouraged researchers to investigate other means to stimulate regeneration of damaged myocardium. The plasticity of stem cells toward multiple lineages offers the potential to repair the heart following injury.

View Article and Find Full Text PDF

Background: The native extracellular matrix (ECM) consists of a highly complex, tissue-specific network of proteins and polysaccharides, which help regulate many cellular functions. Despite the complex nature of the ECM, in vitro cell-based studies traditionally assess cell behavior on single ECM component substrates, which do not adequately mimic the in vivo extracellular milieu.

Methodology/principal Findings: We present a simple approach for developing naturally derived ECM coatings for cell culture that provide important tissue-specific cues unlike traditional cell culture coatings, thereby enabling the maturation of committed C2C12 skeletal myoblast progenitors and human embryonic stem cells differentiated into cardiomyocytes.

View Article and Find Full Text PDF

Many studies have demonstrated that microscale changes to surface chemistry and topography affect cell adhesion, proliferation, differentiation, and gene expression. More recently, studies have begun to examine cell behavior interactions with structures on the nanoscale since , cells recognize and adhere to cell adhesion receptors that are spatially organized on this scale. These studies have been enabled through various fabrication methods, many of which were initially developed for the semiconductor industry.

View Article and Find Full Text PDF

Current injectable materials utilized in myocardial tissue engineering have been borrowed from other tissue engineering applications and have not been specifically designed for the myocardium. We have recently tested the feasibility of using an injectable form of myocardial extracellular matrix that would provide cardiac specific matrix cues as well as be amenable to minimally invasive delivery. We have demonstrated that this material self-assembles in vivo to form a nanofibrous scaffold, which supports the infiltration of neovasculature.

View Article and Find Full Text PDF

Myocardial tissue lacks the ability to significantly regenerate itself following a myocardial infarction, thus tissue engineering strategies are required for repair. Several injectable materials have been examined for cardiac tissue engineering; however, none have been designed specifically to mimic the myocardium. The goal of this study was to investigate the in vitro properties and in vivo potential of an injectable myocardial matrix designed to mimic the natural myocardial extracellular environment.

View Article and Find Full Text PDF