Proteoglycans (PGs) play many important roles in biology, contributing to the mechanical properties of tissues, helping to organize extracellular matrix components, and participating in signaling mechanisms related to mechanotransduction, cell differentiation, immune responses, and wound healing. Our lab has designed two different types of PG mimics: polyelectrolyte complex nanoparticles (PCNs) and PG-mimetic graft copolymers (GCs), both of which are prepared using naturally occurring glycosaminoglycans. This work evaluates the enzymatic stability of these PG mimics using hyaluronidases (I-S, IV-S, and II), chondroitinase ABC, and lysozyme, for PG mimics suspended in solution and adsorbed onto surfaces.
View Article and Find Full Text PDFTo develop hemocompatible surfaces, a cationic tannin derivate (TN) was used to prepare polyelectrolyte multilayers (PEMs) with the glycosaminoglycans heparin (HEP) and chondroitin sulfate (CS). The surface chemistry of the PEMs was characterized using X-ray photoelectron spectroscopy and water contact angle measurements. PEMs assembled with chitosan (CHI) and HEP or CS were used as controls.
View Article and Find Full Text PDF