Redox flow batteries (RFBs) are membrane-separated rechargeable flow cells with redox electrolytes, offering the potential for large-scale energy storage and supporting renewable energy grids. Yet, creating a cost-effective, high-performance RFB system is challenging. In this work, we investigate an Fe/Mn RFB alkaline system based on the [(TEA)Fe-O-Fe(TEA)] and MnO redox couples with a theoretical cell voltage of ∼1.
View Article and Find Full Text PDFNonflammable eutectic solvents show great potential to enhance the concentrations of the redox-active materials and the cell voltages for redox flow batteries (RFBs). Herein, we report a promising redox-active eutectic electrolyte (1.5 M total redox species) with viologen and ferrocene derivatives where both of the redox reactions are reversible with a maximum open-circuit voltage of 1.
View Article and Find Full Text PDFThe application of direct current (DC) produces a rapid and reversible nerve conduction block. However, prolonged injection of charge through a smooth platinum electrode has been found to cause damage to nervous tissue. This damage can be mitigated by incorporating high-capacitance materials (HCM) (e.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2019
Direct current (DC) nerve block has been shown to provide a complete block of nerve conduction without unwanted neural firing. Previous work shows that high capacitance electrodes can be used to safely deliver a DC block. Another way of delivering DC safely is through a separated interface nerve electrode (SINE), such that any reactive species that are generated by the passage of DC are contained in a vessel away from the nerve.
View Article and Find Full Text PDFDirect current (DC) can be applied to a nerve to generate a complete nerve block. However, using conventional platinum electrodes, reactions occur at the nerve interface causing damage to the nerve. The electrode can be separated from the nerve using a biocompatible, ionically conducting medium, which isolates the damaging reactions in a vessel away from the nerve.
View Article and Find Full Text PDFRechargeable redox flow batteries are being developed for medium and large-scale stationary energy storage applications. Flow batteries could play a significant role in maintaining the stability of the electrical grid in conjunction with intermittent renewable energy. However, they are significantly different from conventional batteries in operating principle.
View Article and Find Full Text PDFDirect current (DC) can briefly produce a reversible nerve conduction block in acute experiments. However, irreversible reactions at the electrode-tissue interface have prevented its use in both acute and chronic settings. A high capacitance material (platinum black) using a charge-balanced waveform was evaluated to determine whether brief DC block (13 s) could be achieved repeatedly (>100 cycles) without causing acute irreversible reduction in nerve conduction.
View Article and Find Full Text PDFObjective: Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response.
View Article and Find Full Text PDFInt IEEE EMBS Conf Neural Eng
November 2013
Kilohertz frequency alternating current (KHFAC) has been shown to produce a fast acting, reversible nerve block. The principal drawback to this technique is a short, but intense burst of firing at the initiation of the KHFAC which is referred to as the "onset response". The "onset response" can be eliminated by the use of a second electrode which delivers direct current (DC) briefly during the onset duration.
View Article and Find Full Text PDFElectrochemical reactions are normally initiated in solution by metal electrodes such as Pt, which are expensive and limited in supply. In this Communication, we demonstrate that an atmospheric-pressure microplasma can act as a gaseous, metal-free electrode to mediate electron-transfer reactions in aqueous solutions. Ferricyanide is reduced to ferrocyanide by plasma electrons, and the reduction rate is found to depend on discharge current.
View Article and Find Full Text PDFThe objective of this work was to develop a hydrogen storage module for onboard electrical power sources suitable for use in micro power systems and micro-electro-mechanical systems (MEMS). Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Important design aspects were (a) ready activation at sub-atmospheric hydrogen pressure and room temperature and (b) durability, i.
View Article and Find Full Text PDFThe objective of this work was to demonstrate a micro-fabricated hydrogen storage module for micro-power systems. Hydrogen storage materials were developed as thin-film inks to be compatible with an integrated manufacturing process. Performance and durability of storage modules were evaluated.
View Article and Find Full Text PDF