Publications by authors named "Jesse W Young"

Jumping is a crucial behavior in fitness-critical activities including locomotion, resource acquisition, courtship displays and predator avoidance. In primates, paleontological evidence suggests selection for enhanced jumping ability during their early evolution. However, our interpretation of the fossil record remains limited, as no studies have explicitly linked levels of jumping performance with interspecific skeletal variation.

View Article and Find Full Text PDF

Several studies comparing primate locomotion under lab versus field conditions have shown the importance of implementing both types of studies, as each has their advantages and disadvantages. However, three-dimensional (3D) motion capture of primates has been challenging under natural conditions. In this study, we provide a detailed protocol on how to collect 3D biomechanical data on primate leaping in their natural habitat that can be widely implemented.

View Article and Find Full Text PDF

Presbycusis is one of the most prevalent disabilities in aged populations of industrialized countries. As we age less excitation reaches the central auditory system from the periphery. To compensate, the central auditory system [e.

View Article and Find Full Text PDF

Systems of the body develop in a modular manner. For example, neural development in primates is generally rapid, whereas dental development varies much more. In the present study, we examined development of the skull, teeth, and postcrania in a highly specialized leaping primate, Galago moholi.

View Article and Find Full Text PDF

Objectives: Despite qualitative observations of wild primates pumping branches before leaping across gaps in the canopy, most studies have suggested that support compliance increases the energetic cost of arboreal leaping, thus limiting leaping performance. In this study, we quantified branch pumping behavior and tree swaying in wild primates to test the hypothesis that these behaviors improve leaping performance.

Materials And Methods: We recorded wild colobine monkeys crossing gaps in the canopy and quantitatively tracked the kinematics of both the monkey and the compliant support during behavioral sequences.

View Article and Find Full Text PDF

Objectives: An accident during arboreal locomotion can lead to risky falls, but it remains unclear that the extent to which primates, as adept arborealists, change their locomotion in response to the perceived risk of moving on high supports in the tree canopy. By using more stable forms of locomotion on higher substrates, primates might avoid potentially fatal consequences.

Materials And Methods: Using high-speed cameras, we recorded the quadrupedal locomotion of four wild lemur species-Eulemur rubriventer, Eulemur rufifrons, Hapalemur aureus, and Lemur catta (N = 113 total strides).

View Article and Find Full Text PDF

Objectives: Despite the longstanding importance of grasping adaptations in theories of primate evolution, quantitative data on primate grasping strength remain rare. We present the results of two studies testing the prediction that callitrichines-given their comparative retreat from a small-branch environment and specialization for movement and foraging on tree trunks and large boughs-should be characterized by weaker grasping forces and underdeveloped digital flexor muscles relative to other platyrrhines.

Methods: First, we directly measured manual grasping strength in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis), using a custom-constructed force transducer.

View Article and Find Full Text PDF

Encoding sounds with a high degree of temporal precision is an essential task for the inferior colliculus (IC) to perform and maintain the accurate processing of sounds and speech. However, the age-related reduction of GABAergic neurotransmission in the IC interrupts temporal precision and likely contributes to presbycusis. As presbycusis often manifests at high or low frequencies specifically, we sought to determine if the expression of mRNA for glutamic decarboxylase 1 (GAD1) is downregulated non-uniformly across the tonotopic axis or cell size range in the aging IC.

View Article and Find Full Text PDF

Introduction: Disruptions to the balance of excitation and inhibition in the inferior colliculus (IC) occur during aging and underlie various aspects of hearing loss. Specifically, the age-related alteration to GABAergic neurotransmission in the IC likely contributes to the poorer temporal precision characteristic of presbycusis. Perineuronal nets (PNs), a specialized form of the extracellular matrix, maintain excitatory/inhibitory synaptic environments and reduce structural plasticity.

View Article and Find Full Text PDF

Morphological traits suggesting powerful jumping abilities are characteristic of early crown primate fossils. Because tree squirrels lack certain 'primatelike' grasping features but frequently travel on the narrow terminal branches of trees, they make a viable extant model for an early stage of primate evolution. Here, we explore biomechanical determinants of jumping performance in the arboreal Eastern gray squirrel (Sciurus carolinensis, n = 3) as a greater understanding of the biomechanical strategies that squirrels use to modulate jumping performance could inform theories of selection for increased jumping ability during early primate evolution.

View Article and Find Full Text PDF

The pace of locomotor development is a critical component of lifetime evolutionary fitness. Developmental researchers often divide species into two broad categories based on functional competence at birth: precocial infants who can independently stand and locomote soon after birth versus altricial infants who are either incapable of independent movement or can only do so in a rudimentary manner. However, investigating the lower level neuromotor and biomechanical traits that account for perinatal variation in motor development is complicated by the lack of experimental control inherent to all comparative analyses.

View Article and Find Full Text PDF

Modern tree sloths are one of few mammalian taxa for which quadrupedal suspension is obligatory. Sloth limb musculature is specialized for slow velocity, large force contractions that stabilize their body below branches and conserve energy during locomotion. However, it is unknown whether two- and three-toed sloths converge in their use of limb kinetics and if these patterns are comparable to how primates perform arboreal suspensory locomotion.

View Article and Find Full Text PDF

Most vertebrates are precocial in locomotion, able to walk and run soon after birth. Precociality requires a bony skeleton of sufficient strength to resist mechanical loading during early locomotor efforts. The aim of this study was to use an animal model-the preterm infant pig-to investigate some of the proximate factors that might determine variation in bone strength in precocial animals.

View Article and Find Full Text PDF

The rat animal model is a cost effective and reliable model used in spinal pre-clinical research. Complications from various surgical procedures in humans often arise that were based on these pre-clinical animal models. Therefore safe and efficacious pre-clinical animal models are needed to establish continuity into clinical trials.

View Article and Find Full Text PDF

The material composition of vertebrate connective tissue is highly conserved across taxa. Existing data suggest that the compressive and tensile strength of limb bones are very similar despite marked variation in limb posture and locomotor patterns. However, the material properties of limb bone tissue from suspensory taxa have not been formally evaluated.

View Article and Find Full Text PDF

For many animals, the juvenile stage of life can be particularly perilous. Once independent, immature animals must often complete the same basic survival functions as adults despite smaller body size and other growth-related limits on performance. Because, by definition, juveniles have yet to reproduce, we should expect strong selection for mechanisms to offset these ontogenetic limitations, allowing individuals to reach reproductive adulthood and maintain Darwinian fitness.

View Article and Find Full Text PDF

Arboreal environments require overcoming navigational challenges not typically encountered in other terrestrial habitats. Supports are unevenly distributed and vary in diameter, orientation, and compliance. To better understand the strategies that arboreal animals use to maintain stability in this environment, laboratory researchers must endeavor to mimic those conditions.

View Article and Find Full Text PDF

Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance.

View Article and Find Full Text PDF

The age-related loss of GABA in the inferior colliculus (IC) likely plays a role in the development of age-related hearing loss. Perineuronal nets (PNs), specialized aggregates of extracellular matrix, increase with age in the IC. PNs, associated with GABAergic neurotransmission, can stabilize synapses and inhibit structural plasticity.

View Article and Find Full Text PDF

Objectives: In many primates, the greater proportion of climbing and suspensory behaviors in the juvenile repertoire likely necessitates good grasping capacities. Here, we tested whether very young individuals show near-maximal levels of grasping strength, and whether such an early onset of grasping performance could be explained by ontogenetic variability in the morphology of the limbs in baboons.

Material And Methods: We quantified a performance trait, hand pull strength, at the juvenile and adult stages in a cross-sectional sample of 15 olive baboons (Papio anubis).

View Article and Find Full Text PDF

Little is known about the functions of Group II metabotropic glutamate receptors (mGluRs2/3) in the inferior colliculus (IC), a midbrain structure that is a major integration region of the central auditory system. We investigated how these receptors modulate sound-evoked and spontaneous firing in the mouse IC We first performed immunostaining and tested hearing thresholds to validate vesicular GABA transporter (VGAT)-ChR2 transgenic mice on a mixed CBA/CaJ x C57BL/6J genetic background. Transgenic animals allowed for optogenetic cell-type identification.

View Article and Find Full Text PDF

Arboreal environments present considerable biomechanical challenges for animals moving and foraging among substrates varying in diameter, orientation and compliance. Most studies of quadrupedal gait kinematics in primates and other arboreal mammals have focused on symmetrical walking gaits and the significance of diagonal sequence gaits. Considerably less research has examined asymmetrical gaits, despite their prevalence in small-bodied arboreal taxa.

View Article and Find Full Text PDF

Fine-branch models have long played a central role in primate evolutionary research. Nevertheless, recent studies of positional behavior in nonprimate arboreal mammals have challenged the idea that synapomorphic primate features, such as grasping extremities, uniquely facilitated access to the fine-branch zone. We test the alternative hypothesis that grasping extremities specifically improve locomotor performance in a fine-branch environment by examining how support diameter influences locomotor mechanics in one sciurid rodent (Sciurus carolinensis) and two platyrrhine primates (Callithrix jacchus and Saimiri boliviensis).

View Article and Find Full Text PDF

Age-related hearing loss, one of the most frequently diagnosed disabilities in industrialized countries, may result from declining levels of GABA in the aging inferior colliculus (IC). However, the mechanisms of aging and subsequent disruptions of temporal processing in elderly hearing abilities are still being investigated. Perineuronal nets (PNs) are a specialized form of the extracellular matrix and have been linked to GABAergic neurotransmission and to the regulation of structural and synaptic plasticity.

View Article and Find Full Text PDF