Proc Natl Acad Sci U S A
July 2023
Early in the COVID-19 pandemic, data suggested that males had a higher risk of developing severe disease and that androgen deprivation therapy might be associated with protection. Combined with the fact that (), a host entry factor for the SARS-CoV-2 virus, was a well-known androgen-regulated gene, this led to an upsurge of research investigating androgen receptor (AR)-targeting drugs. Proxalutamide, an AR antagonist, was shown in initial clinical studies to benefit COVID-19 patients; however, further validation is needed as one study was retracted.
View Article and Find Full Text PDFFungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins.
View Article and Find Full Text PDFThe COVID-19 pandemic has highlighted the need for new antiviral approaches because many of the currently approved drugs have proven ineffective against mitigating SARS-CoV-2 infections. The host transmembrane serine protease TMPRSS2 is a promising antiviral target because it plays a role in priming the spike protein before viral entry occurs for the most virulent variants. Further, TMPRSS2 has no established physiological role, thereby increasing its attractiveness as a target for antiviral agents.
View Article and Find Full Text PDFFungal pathogens like can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins.
View Article and Find Full Text PDFAlthough the COVID-19 pandemic began over three years ago, the virus responsible for the disease, SARS-CoV-2, continues to infect people across the globe. As such, there remains a critical need for development of novel therapeutics against SARS-CoV-2. One technology that has remained relatively unexplored in COVID-19 is the use of antisense oligonucleotides (ASOs)-short single-stranded nucleic acids that bind to target RNA transcripts to modulate their expression.
View Article and Find Full Text PDFInfection of human peripheral blood cells by SARS-CoV-2 has been debated because immune cells lack mRNA expression of both angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease type 2 (TMPRSS2). Herein we demonstrate that resting primary monocytes harbor abundant cytoplasmic ACE2 and TMPRSS2 protein and that circulating exosomes contain significant ACE2 protein. Upon ex vivo TLR4/7/8 stimulation, cytoplasmic ACE2 was quickly translocated to the monocyte cell surface independently of ACE2 transcription, while TMPRSS2 surface translocation occurred in conjunction with elevated mRNA expression.
View Article and Find Full Text PDFUnlabelled: Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection , generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern.
View Article and Find Full Text PDFMoroidin is a bicyclic plant octapeptide with tryptophan side-chain cross-links, originally isolated as a pain-causing agent from the Australian stinging tree . Moroidin and its analog celogentin C, derived from , are inhibitors of tubulin polymerization and, thus, lead structures for cancer therapy. However, low isolation yields from source plants and challenging organic synthesis hinder moroidin-based drug development.
View Article and Find Full Text PDFThe ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires treatments with rapid clinical translatability. Here we develop a multi-target and multi-ligand virtual screening method to identify FDA-approved drugs with potential activity against SARS-CoV-2 at traditional and understudied viral targets. 1,268 FDA-approved small molecule drugs were docked to 47 putative binding sites across 23 SARS-CoV-2 proteins.
View Article and Find Full Text PDFBovine lactoferrin (bLF), a naturally occurring glycoprotein found in milk, has bioactive characteristics against many microbes, viruses, and other pathogens. Bovine lactoferrin strongly inhibits SARS-CoV-2 infection in vitro through direct entry inhibition and immunomodulatory mechanisms. This study reports on the anti-SARS-CoV-2 efficacy of commercially available bLF and common dairy ingredients in the human lung cell line H1437 using a custom high-content imaging and analysis pipeline.
View Article and Find Full Text PDFMany bioactive plant cyclic peptides form side-chain-derived macrocycles. Lyciumins, cyclic plant peptides with tryptophan macrocyclizations, are ribosomal peptides (RiPPs) originating from repetitive core peptide motifs in precursor peptides with plant-specific BURP (BNM2, USP, RD22 and PG1beta) domains, but the biosynthetic mechanism for their formation has remained unknown. Here, we characterize precursor-peptide BURP domains as copper-dependent autocatalytic peptide cyclases and use a combination of tandem mass spectrometry-based metabolomics and plant genomics to systematically discover five BURP-domain-derived plant RiPP classes, with mono- and bicyclic structures formed via tryptophans and tyrosines, from botanical collections.
View Article and Find Full Text PDFThe global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity.
View Article and Find Full Text PDFThe global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10-15 years from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation.
View Article and Find Full Text PDF