The amyloid-β (Aβ) protein forms fibrils and higher-order plaque aggegrates in Alzheimer's disease (AD) brain. The copper ion, Cu(2+), is found at high concentrations in plaques, but its role in AD etiology is unclear. We use high-resolution pulsed electron paramagnetic resonance spectroscopy to characterize the coordination structure of Cu(2+) in the fibrillar form of full-length Aβ(1-40).
View Article and Find Full Text PDFCopper has been proposed to play a role in Alzheimer's disease through interactions with the amyoid-beta (Abeta) peptide. The coordination environment of bound copper as a function of Cu:Abeta stoichiometry and Abeta oligomerization state are particularly contentious. Using low-temperature electron paramagnetic resonance (EPR) spectroscopy, we spectroscopically distinguish two Cu(II) binding sites on both soluble and fibrillar Abeta (for site 1, A parallel = 168 +/- 1 G and g parallel = 2.
View Article and Find Full Text PDFCopper is implicated in the in vitro formation and toxicity of Alzheimer's disease amyloid plaques containing the beta-amyloid (Abeta) peptide (Bush, A. I., et al.
View Article and Find Full Text PDFAmyloid-beta (Abeta) peptide is the principal constituent of plaques associated with Alzheimer's disease and is thought to be responsible for the neurotoxicity associated with the disease. Metal ions have been hypothesized to play a role in the formation and neurotoxicity of aggregates associated with Alzheimer's disease (Bush, A. I.
View Article and Find Full Text PDF