During the most recent deglaciation, the upwards trend of warmer Northern Hemisphere (NH) temperatures was punctuated by a rapid and intense return to glacial conditions: the Younger Dryas (YD). The end of this event marks the beginning of the Holocene. Using the University of Toronto version of CCSM4, a model of the climate prior to the YD was created with correct boundary conditions.
View Article and Find Full Text PDFBy far the most prescient insights into the interior structure of the planet have been provided on the basis of elastic wave seismology. Analysis of the travel times of shear or compression wave phases excited by individual earthquakes, or through analysis of the elastic gravitational free oscillations that individual earthquakes of sufficiently large magnitude may excite, has been the central focus of Earth physics research for more than a century. Unfortunately, data provide no information that is directly relevant to understanding the solid state 'flow' of the polycrystalline outer 'mantle' shell of the planet that is involved in the thermally driven convective circulation that is responsible for powering the 'drift' of the continents and which controls the rate of planetary cooling on long timescales.
View Article and Find Full Text PDF