Publications by authors named "Jesse Stricker"

One defining goal of synthetic biology is the development of engineering-based approaches that enable the construction of gene-regulatory networks according to 'design specifications' generated from computational modelling. This approach provides a systematic framework for exploring how a given regulatory network generates a particular phenotypic behaviour. Several fundamental gene circuits have been developed using this approach, including toggle switches and oscillators, and these have been applied in new contexts such as triggered biofilm development and cellular population control.

View Article and Find Full Text PDF

Protein decay rates are regulated by degradation machinery that clears unnecessary housekeeping proteins and maintains appropriate dynamic resolution for transcriptional regulators. Turnover rates are also crucial for fluorescence reporters that must strike a balance between sufficient fluorescence for signal detection and temporal resolution for tracking dynamic responses. Here, we use components of the Escherichia coli degradation machinery to construct a Saccharomyces cerevisiae strain that allows for tunable degradation of a tagged protein.

View Article and Find Full Text PDF

The bacterial cell division protein FtsZ assembles into straight protofilaments, one subunit thick, in which subunits appear to be connected by identical bonds or interfaces. These bonds involve the top surface of one subunit making extensive contact with the bottom surface of the subunit above it. We have investigated this interface by site-directed mutagenesis.

View Article and Find Full Text PDF

We have characterized the in vivo phenotypes of 17 mutations of Escherichia coli ftsZ. In particular, we determined whether these mutations can complement a null ftsZ phenotype, and we demonstrated that two noncomplementing mutations show partial dominant-negative behavior. We performed immunofluorescence microscopy to determine whether these mutants could assemble into normal or abnormal structures in vivo.

View Article and Find Full Text PDF

FtsZ, the major cytoskeletal component of the bacterial cell-division machine, assembles into a ring (the Z-ring) that contracts at septation. FtsZ is a bacterial homolog of tubulin, with similar tertiary structure, GTP hydrolysis, and in vitro assembly. We used green fluorescent protein-labeled FtsZ and fluorescence recovery after photobleaching to show that the E.

View Article and Find Full Text PDF