Publications by authors named "Jesse S Aaron"

The accelerating pace of technological advancements necessitates specialised expertise and cutting-edge instruments to maintain competitive research in life sciences. Core facilities - collaborative laboratories equipped with state-of-the-art tools and staffed by expert personnel - are vital resources that support diverse scientific endeavours. However, their adoption in lower-income communities has been comparatively stagnant due to both financial and cultural challenges.

View Article and Find Full Text PDF

The visual allure of microscopy makes it an intuitively powerful research tool. Intuition, however, can easily obscure or distort the reality of the information contained in an image. Common cognitive biases, combined with institutional pressures that reward positive research results, can quickly skew a microscopy project towards upholding, rather than rigorously challenging, a hypothesis.

View Article and Find Full Text PDF

The optical microscope has revolutionized biology since at least the 17 Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges.

View Article and Find Full Text PDF

PIEZOs are mechanosensitive ion channels that convert force into chemoelectric signals and have essential roles in diverse physiological settings. In vitro studies have proposed that PIEZO channels transduce mechanical force through the deformation of extensive blades of transmembrane domains emanating from a central ion-conducting pore. However, little is known about how these channels interact with their native environment and which molecular movements underlie activation.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque.

View Article and Find Full Text PDF

Microscopy core facilities are increasingly utilised research resources, but they are generally only available to users within the host institution. Such localised access misses an opportunity to facilitate research across a broader user base. Here, we present the model of an open-access microscopy facility, using the Advanced Imaging Center (AIC) at Howard Hughes Medical Institute Janelia Research Campus as an example.

View Article and Find Full Text PDF

While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities.

View Article and Find Full Text PDF

Fluorescence microscopy images should not be treated as perfect representations of biology. Many factors within the biospecimen itself can drastically affect quantitative microscopy data. Whereas some sample-specific considerations, such as photobleaching and autofluorescence, are more commonly discussed, a holistic discussion of sample-related issues (which includes less-routine topics such as quenching, scattering and biological anisotropy) is required to appropriately guide life scientists through the subtleties inherent to bioimaging.

View Article and Find Full Text PDF

The importance of mechanical force in biology is evident across diverse length scales, ranging from tissue morphogenesis during embryo development to mechanotransduction across single adhesion proteins at the cell surface. Consequently, many force measurement techniques rely on optical microscopy to measure forces being applied by cells on their environment, to visualize specimen deformations due to external forces, or even to directly apply a physical perturbation to the sample via photoablation or optogenetic tools. Recent developments in advanced microscopy offer improved approaches to enhance spatiotemporal resolution, imaging depth, and sample viability.

View Article and Find Full Text PDF

Recent technological advances have made microscopy indispensable in life science research. Its ubiquitous use, in turn, underscores the importance of ensuring that microscopy-based experiments are replicable and that the resulting data comparable. While there has been a wealth of review articles, practical guides and conferences devoted to the topic of maintaining standard instrument operating conditions, the paucity of attention dedicated to properly documenting microscopy experiments is undeniable.

View Article and Find Full Text PDF

In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs.

View Article and Find Full Text PDF

The cyanobacterial culture HT-58-2, composed of a filamentous cyanobacterium and accompanying community bacteria, produces chlorophyll a as well as the tetrapyrrole macrocycles known as tolyporphins. Almost all known tolyporphins (A-M except K) contain a dioxobacteriochlorin chromophore and exhibit an absorption spectrum somewhat similar to that of chlorophyll a. Here, hyperspectral confocal fluorescence microscopy was employed to noninvasively probe the locale of tolyporphins within live cells under various growth conditions (media, illumination, culture age).

View Article and Find Full Text PDF

Fluorescence image co-localization analysis is widely utilized to suggest biomolecular interaction. However, there exists some confusion as to its correct implementation and interpretation. In reality, co-localization analysis consists of at least two distinct sets of methods, termed co-occurrence and correlation.

View Article and Find Full Text PDF

Many membrane receptors are recruited to specific cell surface domains to form nanoscale clusters upon ligand activation. This step appears to be necessary to initiate cell signaling, including pathways in innate immune system activation. However, virulent pathogens such as Yersinia pestis (the causative agent of plague) are known to evade innate immune detection, in contrast to similar microbes (such as Escherichia coli) that elicit a robust response.

View Article and Find Full Text PDF
Article Synopsis
  • The research investigates the biocompatibility and toxicity of engineered nanomaterials, particularly quantum dots (QDs), for biomedical applications.
  • Advanced imaging techniques were used to analyze how different sizes and shapes of CdSe QDs interact with live immune cells, focusing on their movement within the plasma membrane and internalization rates.
  • The findings indicate that the size and shape of QDs significantly affect their diffusion, uptake into cells, and sorting within cellular compartments, highlighting the importance of these characteristics for improving the safety of nanomaterials.
View Article and Find Full Text PDF

We describe a new approach for optical imaging that combines the advantages of molecularly targeted plasmonic nanoparticles and magnetic actuation. This combination is achieved through hybrid nanoparticles with an iron oxide core surrounded by a gold layer. The nanoparticles are targeted in-vitro to epidermal growth factor receptor, a common cancer biomarker.

View Article and Find Full Text PDF

Recent developments in optical technologies have the potential to improve the speed and accuracy of screening and diagnosis of curable precancerous lesions and early cancer, thereby decreasing the costs of detection and management of epithelial malignancies. The development of molecular-specific contrast agents for markers of early neoplastic transformation could improve the detection and molecular characterization of premalignant lesions. In the oral cavity, epidermal growth factor receptor (EGFR) overexpression has been identified in early stages of premalignant lesions of the oral squamous cell carcinoma; therefore, real-time assessment of EGFR expression could serve as a biomarker for oral neoplasia.

View Article and Find Full Text PDF