Publications by authors named "Jesse Richardson-Jones"

The serotonin 1A receptor (5-HT1A) has a major role in modulating the effects of serotonin on mood and behavior. Previous studies have shown that knockout of 5-HT1A selectively in the raphe leads to higher levels of anxiety during adulthood. However, it remains unclear whether this phenotype is due to variation in receptor levels specifically during development or throughout life.

View Article and Find Full Text PDF

Identifying the factors contributing to the etiology of anxiety and depression is critical for the development of more efficacious therapies. Serotonin (5-HT) is intimately linked to both disorders. The inhibitory serotonin-1A (5-HT(1A)) receptor exists in two separate populations with distinct effects on serotonergic signaling: (1) an autoreceptor that limits 5-HT release throughout the brain and (2) a heteroreceptor that mediates inhibitory responses to released 5-HT.

View Article and Find Full Text PDF

We created the Flexible Accelerated STOP Tetracycline Operator (tetO)-knockin (FAST) system, an efficient method for manipulating gene expression in vivo to rapidly screen animal models of disease. A single gene targeting event yields two distinct knockin mice-STOP-tetO and tetO knockin-that permit generation of multiple strains with variable expression patterns: 1) knockout, 2) Cre-mediated rescue, 3) tetracycline-controlled transcriptional activator (tTA)-mediated misexpression, 4) tetracycline-controlled transcriptional activator (tTA)-mediated overexpression, and 5) tetracycline-controlled transcriptional silencer (tTS)-mediated conditional knockout/knockdown. Using the FAST system, multiple gain-of-function and loss-of-function strains can therefore be generated on a time scale not previously achievable.

View Article and Find Full Text PDF

Most depressed patients don't respond to their first drug treatment, and the reasons for this treatment resistance remain enigmatic. Human studies implicate a polymorphism in the promoter of the serotonin-1A (5-HT(1A)) receptor gene in increased susceptibility to depression and decreased treatment response. Here we develop a new strategy to manipulate 5-HT(1A) autoreceptors in raphe nuclei without affecting 5-HT(1A) heteroreceptors, generating mice with higher (1A-High) or lower (1A-Low) autoreceptor levels.

View Article and Find Full Text PDF