Two of the main impediments to learning complex tasks are that relationships between different stimuli, including rewards, can be uncertain and context-dependent. Reinforcement learning (RL) provides a framework for learning, by predicting total future reward directly (model-free RL), or via predictions of future states (model-based RL). Within this framework, "successor representation" (SR) predicts total future occupancy of all states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Humans and other animals use multiple strategies for making decisions. Reinforcement-learning theory distinguishes between stimulus-response (model-free; MF) learning and deliberative (model-based; MB) planning. The spatial-navigation literature presents a parallel dichotomy between navigation strategies.
View Article and Find Full Text PDF