Publications by authors named "Jesse Meyer"

Article Synopsis
  • Proteomics is the extensive study of proteins, focusing on their structure and function through methods like identification and quantification.
  • The main approach, known as "shotgun" or "bottom-up proteomics," involves breaking proteins into smaller peptides for analysis via mass spectrometry.
  • This review aims to guide newcomers in proteomics by explaining various methods from basic biochemistry and protein extraction to interpretation and validation of results.
View Article and Find Full Text PDF

Objective: A multitude of factors affect a hospitalized individual's blood glucose (BG), making BG difficult to predict and manage. Beyond medications well established to alter BG, such as beta-blockers, there are likely many medications with undiscovered effects on BG variability. Identification of these medications and the strength and timing of these relationships has potential to improve glycemic management and patient safety.

View Article and Find Full Text PDF

Single-cell omics data analysis pipelines are complicated to design and difficult to share or reproduce. We describe a web platform that enables no-code analysis pipeline design, simple computing via the Open Science Grid, and sharing of entire data analysis pipelines, their input data, and interactive results. We expect this platform to increase the accessibility and reproducibility of single-cell omics.

View Article and Find Full Text PDF

Proteomes are well known to poorly correlate with transcriptomes measured from the same sample. While connected, the complex processes that impact the relationships between transcript and protein quantities remains an open research topic. Many studies have attempted to predict proteomes from transcriptomes with limited success.

View Article and Find Full Text PDF

Noninvasive detection of protein biomarkers in plasma is crucial for clinical purposes. Liquid chromatography-mass spectrometry (LC-MS) is the gold standard technique for plasma proteome analysis, but despite recent advances, it remains limited by throughput, cost, and coverage. Here, we introduce a new hybrid method that integrates direct infusion shotgun proteome analysis (DISPA) with nanoparticle (NP) protein corona enrichment for high-throughput and efficient plasma proteomic profiling.

View Article and Find Full Text PDF

Background: Descending thoracic aortic aneurysms and dissections can go undetected until severe and catastrophic, and few clinical indices exist to screen for aneurysms or predict risk of dissection.

Methods: This study generated a plasma proteomic dataset from 75 patients with descending type B dissection (Type B) and 62 patients with descending thoracic aortic aneurysm (DTAA). Standard statistical approaches were compared to supervised machine learning (ML) algorithms to distinguish Type B from DTAA cases.

View Article and Find Full Text PDF

The coevolution of liquid chromatography (LC) with mass spectrometry (MS) has shaped contemporary proteomics. LC hyphenated to MS now enables quantification of more than 10,000 proteins in a single injection, a number that likely represents most proteins in specific human cells or tissues. Separations by ion mobility spectrometry (IMS) have recently emerged to complement LC and further improve the depth of proteomics.

View Article and Find Full Text PDF

The post-translational modification lysine succinylation is implicated in the regulation of various metabolic pathways. However, its biological relevance remains uncertain due to methodological difficulties in determining high-impact succinylation sites. Here, using stable isotope labelling and data-independent acquisition mass spectrometry, we quantified lysine succinylation stoichiometries in mouse livers.

View Article and Find Full Text PDF

Non-invasive detection of protein biomarkers in plasma is crucial for clinical purposes. Liquid chromatography mass spectrometry (LC-MS) is the gold standard technique for plasma proteome analysis, but despite recent advances, it remains limited by throughput, cost, and coverage. Here, we introduce a new hybrid method, which integrates direct infusion shotgun proteome analysis (DISPA) with nanoparticle (NP) protein coronas enrichment for high throughput and efficient plasma proteomic profiling.

View Article and Find Full Text PDF
Article Synopsis
  • Proteomics involves the large-scale study of proteins in biological systems, focusing on their identification and quantification through techniques like mass spectrometry.
  • * The predominant method used is "shotgun proteomics," where proteins are broken down into peptides for detailed analysis.
  • * This text aims to provide a comprehensive overview of various proteomics methods, from the basics of biochemistry to practical experimental strategies, serving as a resource for both novice and experienced researchers in the field.*
View Article and Find Full Text PDF

Non-typeable (NTHi) causes millions of infections each year. Though it is primarily known to cause otitis media, recent studies have shown NTHi is emerging as a primary pathogen for invasive infection, prompting the need for new vaccines and treatments. Lipooligosaccharide (LOS) has been identified as a potential vaccine candidate due to its immunogenic nature and outer membrane localization.

View Article and Find Full Text PDF

Skeletal muscle is a major regulatory tissue of whole-body metabolism and is composed of a diverse mixture of cell (fiber) types. Aging and several diseases differentially affect the various fiber types, and therefore, investigating the changes in the proteome in a fiber-type specific manner is essential. Recent breakthroughs in isolated single muscle fiber proteomics have started to reveal heterogeneity among fibers.

View Article and Find Full Text PDF
Article Synopsis
  • The introduction of large language models (LLMs) represents a significant change in how we generate text, allowing for human-like chat interactions.
  • LLM-based chatbots can enhance academic efficiency, but ethical issues like fair use and biases need to be addressed.
  • The editorial emphasizes the importance of effective usage, distinguishes between LLM use and plagiarism, calls for addressing bias and accuracy concerns, and highlights a promising future for LLM applications in academia.
View Article and Find Full Text PDF

Combined multi-omics analysis of proteomics, polar metabolomics, and lipidomics requires separate liquid chromatography-mass spectrometry (LC-MS) platforms for each omics layer. This requirement for different platforms limits throughput and increases costs, preventing the application of mass spectrometry-based multi-omics to large scale drug discovery or clinical cohorts. Here, we present an innovative strategy for simultaneous multi-omics analysis by direct infusion (SMAD) using one single injection without liquid chromatography.

View Article and Find Full Text PDF

Identification and proteomic characterization of rare cell types within complex organ-derived cell mixtures is best accomplished by label-free quantitative mass spectrometry. High throughput is required to rapidly survey hundreds to thousands of individual cells to adequately represent rare populations. Here we present parallelized nanoflow dual-trap single-column liquid chromatography (nanoDTSC) operating at 15 min of total run time per cell with peptides quantified over 11.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to differentiate between descending thoracic aortic aneurysms (DTAA) and descending type B dissections to improve detection and risk prediction, as these conditions often go unnoticed until serious complications arise.
  • - Researchers used a proteomic dataset from 75 patients with type B dissection and 62 with DTAA, applying both traditional statistical methods and machine learning to identify important proteins associated with each condition.
  • - Findings revealed that only hemopexin (HPX) significantly differed between the two conditions, and machine learning effectively classified cases, with pathways related to immune response and blood coagulation being significantly enriched in DTAA patients compared to type B dissections.
View Article and Find Full Text PDF

Lysine Nɛ-acylations, such as acetylation or succinylation, are post-translational modifications that regulate protein function. In mitochondria, lysine acylation is predominantly non-enzymatic, and only a specific subset of the proteome is acylated. Coenzyme A (CoA) can act as an acyl group carrier via a thioester bond, but what controls the acylation of mitochondrial lysines remains poorly understood.

View Article and Find Full Text PDF

An average shotgun proteomics experiment detects approximately 10,000 human proteins from a single sample. However, individual proteins are typically identified by peptide sequences representing a small fraction of their total amino acids. Hence, an average shotgun experiment fails to distinguish different protein variants and isoforms.

View Article and Find Full Text PDF

Skeletal muscle is a major regulatory tissue of whole-body metabolism and is composed of a diverse mixture of cell (fiber) types. Aging and several diseases differentially affect the various fiber types, and therefore, investigating the changes in the proteome in a fiber-type specific manner is essential. Recent breakthroughs in isolated single muscle fiber proteomics have started to reveal heterogeneity among fibers.

View Article and Find Full Text PDF

The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems. We assessed more than 9.

View Article and Find Full Text PDF

Background & Aims: The consumption of sugar and a high-fat diet (HFD) promotes the development of obesity and metabolic dysfunction. Despite their well-known synergy, the mechanisms by which sugar worsens the outcomes associated with a HFD are largely elusive.

Methods: Six-week-old, male, C57Bl/6 J mice were fed either chow or a HFD and were provided with regular, fructose- or glucose-sweetened water.

View Article and Find Full Text PDF

Identification and proteomic characterization of rare cell types within complex organ derived cell mixtures is best accomplished by label-free quantitative mass spectrometry. High throughput is required to rapidly survey hundreds to thousands of individual cells to adequately represent rare populations. Here we present parallelized nanoflow dual-trap single-column liquid chromatography (nanoDTSC) operating at 15 minutes of total run time per cell with peptides quantified over 11.

View Article and Find Full Text PDF

Large-scale proteome analysis requires rapid and high-throughput analytical methods. We recently reported a new paradigm in proteome analysis where direct infusion and ion mobility are used instead of liquid chromatography (LC) to achieve rapid and high-throughput proteome analysis. Here, we introduce an improved direct infusion shotgun proteome analysis protocol including label-free quantification (DISPA-LFQ) using CsoDIAq software.

View Article and Find Full Text PDF

Motivation: Cells respond to environments by regulating gene expression to exploit resources optimally. Recent advances in technologies allow for measuring the abundances of RNA, proteins, lipids and metabolites. These highly complex datasets reflect the states of the different layers in a biological system.

View Article and Find Full Text PDF

Proteomic analysis on the scale that captures population and biological heterogeneity over hundreds to thousands of samples requires rapid mass spectrometry methods, which maximize instrument utilization (IU) and proteome coverage while maintaining precise and reproducible quantification. To achieve this, a short liquid chromatography gradient paired to rapid mass spectrometry data acquisition can be used to reproducibly quantify a moderate set of analytes. High-throughput profiling at a limited depth is becoming an increasingly utilized strategy for tackling large sample sets but the time spent on loading the sample, flushing the column(s), and re-equilibrating the system reduces the ratio of meaningful data acquired to total operation time and IU.

View Article and Find Full Text PDF