Despite the clear roles played by peroxisome proliferators-activated receptor alpha (PPAR-alpha) in lipid metabolism, inflammation and feeding, the effects of its activation in the central nervous system (CNS) are largely unknown. Palmitoylethanolamide (PEA), a member of the fatty-acid ethanolamide family, acts peripherally as an endogenous PPAR-alpha agonist, exerting analgesic and anti-inflammatory effects. Both PPAR-alpha and PEA are present in the CNS, but the specific functions of this lipid and its receptor remain to be clarified.
View Article and Find Full Text PDFWe discuss and present new data regarding the physiological and molecular mechanisms of nuclear receptor activation in pain control, with a particular emphasis on non-genomic effects of ligands at peroxisome proliferator-activated receptor (PPAR), GPR30, and classical estrogen receptors. PPARalpha agonists rapidly reduce both acute and chronic pain in a number of pain assays. These effects precede transcriptional anti-inflammatory actions, and are mediated in part by IK(ca) and BK(ca) channels on DRG neurons.
View Article and Find Full Text PDFCannabinoid CB(1) receptor antagonists reduce body weight in rodents and humans, but their clinical utility as anti-obesity agents is limited by centrally mediated side effects. Here, we describe the first mixed CB(1) antagonist/CB(2) agonist, URB447 ([4-amino-1-(4-chlorobenzyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl](phenyl)methanone), which lowers food intake and body-weight gain in mice without entering the brain or antagonizing central CB(1)-dependent responses. URB447 may provide a useful pharmacological tool for investigating the cannabinoid system, and might serve as a starting point for developing clinically viable CB(1) antagonists devoid of central side effects.
View Article and Find Full Text PDFBackground: Propofol can inhibit fatty acid amidohydrolase, the enzyme responsible for the metabolism of anandamide (an endocannabinoid). To study the potential antinociceptive effect of propofol, we administered different doses (0.005, 0.
View Article and Find Full Text PDFThe analgesic properties of cannabinoid receptor agonists are well characterized. However, numerous side effects limit the therapeutic potential of these agents. Here we report a synergistic antinociceptive interaction between the endogenous cannabinoid receptor agonist anandamide and the synthetic peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist 2-(4-(2-(1-Cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2-methylpropionic acid (GW7647) in a model of acute chemical-induced pain.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of bioactive fatty acid ethanolamides, such as the endogenous cannabinoid agonist anandamide. Genetic deletion of the faah gene in mice elevates brain anandamide levels and amplifies the antinociceptive effects of this compound. Likewise, pharmacological blockade of FAAH activity reduces nocifensive behavior in animal models of acute and inflammatory pain.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs) inhibit fatty-acid amide hydrolase (FAAH), the enzyme responsible for the metabolism of anandamide, an endocannabinoid. It has been suggested that the mechanisms of action of NSAIDs could be due to inhibition of cyclooxygenase (COX) and also to an increase in endocannabinoid concentrations. In a previous study we have demonstrated that the local analgesic interaction between anandamide and ibuprofen (a non-specific COX inhibitor) was synergistic for the acute and inflammatory phases of the formalin test.
View Article and Find Full Text PDFSevere pain remains a major area of unmet medical need. Here we report that agonists of the nuclear receptor PPAR-alpha (peroxisome proliferator-activated receptor-alpha) suppress pain behaviors induced in mice by chemical tissue injury, nerve damage, or inflammation. The PPAR-alpha agonists GW7647 [2-(4-(2-(1-cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2-methylpropionic acid], Wy-14643 [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid], and palmitoylethanolamide (PEA) reduced nocifensive behaviors elicited in mice by intraplantar (i.
View Article and Find Full Text PDFOleoylethanolamide (OEA) is an endogenous lipid mediator that inhibits feeding and stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activating receptor-alpha. Little is known about the physiological regulation of this compound outside of the gastrointestinal tract, where its production is regulated by feeding. Here we show that cold exposure increases OEA levels in rat white adipose tissue but not in liver or intestine.
View Article and Find Full Text PDFPalmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid that modulates pain and inflammation. Although the anti-inflammatory effects of PEA were first characterized nearly 50 years ago, the identity of the receptor mediating these actions has long remained elusive. We recently identified the ligand-activated transcription factor, peroxisome proliferator-activated receptor-alpha (PPAR-alpha), as the receptor mediating the anti-inflammatory actions of this lipid amide.
View Article and Find Full Text PDF