Proteins are Nature's molecular machinery and comprise diverse roles while consisting of chemically similar building blocks. In recent years, protein engineering and design have become important research areas, with many applications in the pharmaceutical, energy, and biocatalysis fields, among others-where the aim is to ultimately create a protein given desired structural and functional properties. It is often critical to model the relationship between a protein's sequence, folded structure, and biological function to assist in such protein engineering pursuits.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation.
View Article and Find Full Text PDFDrug Discov Today
May 2021
Is it possible to develop drugs for the treatment of a specific type of metastatic cancer by targeting sodium ion channels?
View Article and Find Full Text PDFThe β-galactosidase enzyme is a common reporter enzyme that has been used extensively in microbiological and synthetic biology research. Here, we demonstrate that caffeine and theophylline, common natural methylxanthine products found in many foods and pharmaceuticals, negatively impact both the expression and activity of β-galactosidase in . The β-galactosidase activity in grown with increasing concentrations of caffeine and theophylline was reduced over sixfold in a dose-dependent manner.
View Article and Find Full Text PDF