Motivation: Due to the breakthrough in protein structure prediction by AlphaFold, the scientific community has access to 200 million predicted protein structures with near-atomic accuracy from the AlphaFold protein structure DataBase (AFDB), covering nearly the entire protein universe. Segmenting these models into domains and classifying them into an evolutionary hierarchy hold tremendous potential for unraveling essential insights into protein function.
Results: We introduce DPAM-AI, a Domain Parser for AlphaFold Models based on Artificial Intelligence.
Curr Opin Struct Biol
April 2024
Protein-protein interactions (PPIs) are pivotal for driving diverse biological processes, and any disturbance in these interactions can lead to disease. Thus, the study of PPIs has been a central focus in biology. Recent developments in deep learning methods, coupled with the vast genomic sequence data, have significantly boosted the accuracy of predicting protein structures and modeling protein complexes, approaching levels comparable to experimental techniques.
View Article and Find Full Text PDFTrends Biochem Sci
June 2023
The recent breakthroughs in structure prediction, where methods such as AlphaFold demonstrated near-atomic accuracy, herald a paradigm shift in structural biology. The 200 million high-accuracy models released in the AlphaFold Database are expected to guide protein science in the coming decades. Partitioning these AlphaFold models into domains and assigning them to an evolutionary hierarchy provide an efficient way to gain functional insights into proteins.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) are involved in almost all essential cellular processes. Perturbation of PPI networks plays critical roles in tumorigenesis, cancer progression, and metastasis. While numerous high-throughput experiments have produced a vast amount of data for PPIs, these data sets suffer from high false positive rates and exhibit a high degree of discrepancy.
View Article and Find Full Text PDF