Background. Studies of ancestry are difficult in the tomato because it crosses with many wild relatives and species in the tomato clade that have diverged very recently. As a result, the phylogeny in relation to its closest relatives remains uncertain.
View Article and Find Full Text PDFFine mapping by recombinant backcross populations revealed that a preharvest sprouting QTL on 2B contained two QTLs linked in coupling with different effects on the phenotype. Wheat preharvest sprouting (PHS) occurs when grain germinates on the plant before harvest, resulting in reduced grain quality. Previous mapping of quantitative trait locus (QTL) revealed a major PHS QTL, QPhs.
View Article and Find Full Text PDFQuantitative phenotypic traits are influenced by genetic and environmental variables as well as the interaction between the two. Underlying genetic × environment interaction is the influence that the surrounding environment exerts on gene expression. Perturbation of gene expression by environmental factors manifests itself in alterations to gene co-expression networks and ultimately in phenotypic plasticity.
View Article and Find Full Text PDFWheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.
View Article and Find Full Text PDFThe premature germination of seeds before harvest, known as preharvest sprouting (PHS), is a serious problem in all wheat growing regions of the world. In order to determine genetic control of PHS resistance in white wheat from the relatively uncharacterized North American germplasm, a doubled haploid population consisting of 209 lines from a cross between the PHS resistant variety Cayuga and the PHS susceptible variety Caledonia was used for QTL mapping. A total of 16 environments were used to detect 15 different PHS QTL including a major QTL, QPhs.
View Article and Find Full Text PDFThe use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to crop species has revolutionized molecular genetics and crop improvement strategies. This study compared 4485 expressed sequence tags (ESTs) that were physically mapped in wheat chromosome bins, to the public rice genome sequence data from 2251 ordered BAC/PAC clones using BLAST. A rice genome view of homologous wheat genome locations based on comparative sequence analysis revealed numerous chromosomal rearrangements that will significantly complicate the use of rice as a model for cross-species transfer of information in nonconserved regions.
View Article and Find Full Text PDF