The prevalence of hypertension increases with age and is the leading modifiable risk factor for cognitive impairment and dementia. At present, the neural mechanisms promoting hypertension across the lifespan are incompletely understood. Using the Sprague-Dawley (SD) rat as a model of normal aging, we hypothesized (1) blood brain barrier (BBB) disruption and neuroinflammation in the paraventricular nucleus (PVN) of the hypothalamus enhances sympathetic tone and contributes to age-dependent hypertension, (2) age-dependent hypertension is associated with cognitive impairment, and (3) lowering blood pressure in aged rats with established hypertension improves cognitive function.
View Article and Find Full Text PDFAging is a non-modifiable understudied risk factor for hypertension. We hypothesized that sympathetically mediated activation of renal sodium reabsorption drives age-dependent hypertension and the salt sensitivity of blood pressure (BP). Using 3-, 8-, and 16-month-old male and female Sprague-Dawley rats as a model of normal aging, we assessed BP, indices of sympathetic tone, and the physiological responses to acute and chronic sodium challenge including sodium chloride cotransporter (NCC) regulation.
View Article and Find Full Text PDFThe prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension.
View Article and Find Full Text PDFBackground: Leigh syndrome, an inherited neurometabolic disorder, is estimated to be the most common pediatric manifestation of mitochondrial disease. No treatments are currently available for Leigh syndrome due to many hurdles in drug discovery efforts. Leigh syndrome causal variants span over 110 different genes and likely lead to both unique and shared biochemical alterations, often resulting in overlapping phenotypic features.
View Article and Find Full Text PDFThe prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2023
Hypertension (HTN), a highly prevalent public issue affecting one in two adults in the United States, has recently been shown to differentially burden individuals belonging to marginalized communities, such as the lesbian, gay, bisexual, and transgender (LGBT) communities. The minority stress theory posits that a unique combination of marginalization-related psychosocial stressors and coping behaviors may underlie the increased burden of diseases like HTN in LGBT populations. Uncontrolled or poorly managed HTN often leads to the development of adverse cardiovascular outcomes, such as heart failure (HF).
View Article and Find Full Text PDFNuclear-mitochondrial DNA segments (NUMTs) are mitochondrial DNA (mtDNA) fragments that have been inserted into the nuclear genome. Some NUMTs are common within the human population but most NUMTs are rare and specific to individuals. NUMTs range in size from 24 base pairs to encompassing nearly the entire mtDNA and are found throughout the nuclear genome.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2022
Hypertension, a major public health issue, is estimated to contribute to 10% of all deaths worldwide. Further, the salt sensitivity of blood pressure is a critical risk factor for the development of hypertension. The hypothalamic paraventricular nucleus (PVN) coordinates neuro-hormonal responses to alterations in plasma sodium and osmolality and multiple G Protein-Coupled Receptors (GPCRs) are involved in fluid and electrolyte homeostasis.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2022
We have previously reported that brain Gαi subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin of the signal that drives the endogenous activation and up-regulation of PVN Gαi subunit protein signal transduction pathways is unknown. By central oligodeoxynucleotide (ODN) administration we show that the pressor responses to central acute administration and central infusion of sodium chloride occur independently of brain Gαi protein pathways.
View Article and Find Full Text PDFIncreased sympathoexcitation and renal sodium retention during high salt intake are hallmarks of the salt sensitivity of blood pressure. The mechanism(s) by which excessive sympathetic nervous system release of norepinephrine influences renal sodium reabsorption is unclear. However, studies demonstrate that norepinephrine can stimulate the activity of the NCC (sodium chloride cotransporter) and promote the development of SSH (salt-sensitive hypertension).
View Article and Find Full Text PDFWe have previously reported that in salt-resistant rat phenotypes brain, Gαi (guanine nucleotide-binding protein alpha inhibiting activity polypeptide 2) proteins are required to maintain blood pressure and sodium balance. However, the impact of hypothalamic paraventricular nucleus (PVN) Gαi proteins on the salt sensitivity of blood pressure is unknown. Here, by the bilateral PVN administration of a targeted Gαi oligodeoxynucleotide, we show that PVN-specific Gαi proteins are required to facilitate the full natriuretic response to an acute volume expansion (peak natriuresis [μeq/min] scrambled (SCR) oligodeoxynucleotide 41±3 versus Gαi oligodeoxynucleotide 18±4; <0.
View Article and Find Full Text PDFNew Findings: • What is the central question of this study? We hypothesized that central inflammatory processes that involve activation of microglia and astrocytes contribute to the development of Gαi protein-dependent, salt-sensitive hypertension. • What is the main finding and its importance? The main finding is that PVN-specific inflammatory processes, driven by microglial activation, appear to be linked to the development of Gαi protein-dependent, salt-sensitive hypertension in Sprague-Dawley rats. This finding might reveal new mechanistic targets in the treatment of hypertension.
View Article and Find Full Text PDFBackground: Cancer cachexia is a metabolic wasting syndrome that is strongly associated with a poor prognosis. The initiating factors causing fat and muscle loss are largely unknown. Previously, we found that leukaemia inhibitory factor (LIF) secreted by C26 colon carcinoma cells was responsible for atrophy in treated myotubes.
View Article and Find Full Text PDF