Dye-contaminated wastewater poses serious environmental risks to ecosystems and human health. Diatoms, algae with nanoporous frustules (cell walls), offer promising potential for wastewater remediation due to their high surface area and adsorption properties. While dead diatom biomass is well-studied for biosorption, research on living diatoms' bioaccumulation and biotransformation potential is limited, with gaps in kinetic and equilibrium modeling of dye adsorption.
View Article and Find Full Text PDFShort-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials.
View Article and Find Full Text PDFMXenes are a family of two-dimensional (2D) materials with broad and varied applications in biology, materials science, photonics, and environmental remediation owing to their layered structure and high surface area-to-volume ratio. MXenes have exhibited significant nonlinear optical characteristics, which have been primarily explored in the context of photonics applications, yet the second-harmonic generation (SHG) behavior of MXenes remains an unexplored aspect of their optical properties. Herein, we demonstrate and quantify large second-order responses of 2D TiCT MXenes both in aqueous solutions and on a silicon substrate for the first time.
View Article and Find Full Text PDFThe movements of molecules at interfaces and surfaces are restricted by their asymmetric environments, leading to anisotropic orientational motions. In this work, in-plane orientational motions of the -C=O and -CF3 groups of coumarin 153 (C153) at the air/water interface were measured using time-resolved (TR) vibrational sum frequency generation (SFG). The in-plane orientational time constants of the -C=O and -CF3 groups of C153 are found to be 41.
View Article and Find Full Text PDFTwo-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic-vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity.
View Article and Find Full Text PDFIntroduction: The influence of hippocampal connectivity on memory performance is well established in individuals with high educational attainment. However, the role of hippocampal connectivity in illiterate populations remains poorly understood.
Methods: Thirty-five illiterate adults were administered a literacy assessment (Test of Functional Health Literacy in Adults [TOFHLA]), structural and resting state functional magnetic resonance imaging, and an episodic memory test (Free and Cued Selective Reminding Test).
Droplet interfaces are instrumental in processes of biology, engineering, production, and environmental systems. The chemical and physical properties of heterogeneous interfaces are known to be different from those of their underlying bulk phases, and different again when considering the curved surface of submicron aerosol droplets. The recently developed technique of vibrational sum-frequency scattering (VSFS) spectroscopy from airborne particles has emerged as an interface-specific method for the in situ analysis of this unique system.
View Article and Find Full Text PDFConical intersections (CIs) hold significant stake in manipulating and controlling photochemical reaction pathways of molecules at interfaces and surfaces by affecting molecular dynamics therein. Currently, there is no tool for characterizing CIs at interfaces and surfaces. To this end, we have developed phase-cycling interface-specific two-dimensional electronic spectroscopy (i2D-ES) and combined it with advanced computational modeling to explore nonadiabatic CI dynamics of molecules at the air/water interface.
View Article and Find Full Text PDFNeurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases.
View Article and Find Full Text PDFMany photoinduced excited states' relaxation processes and chemical reactions occur at interfaces and surfaces, including charge transfer, energy transfer, proton transfer, proton-coupled electron transfer, configurational dynamics, conical intersections, etc. Of them, interactions of electronic and vibrational motions, namely, vibronic couplings, are the main determining factors for the relaxation processes or reaction pathways. However, time-resolved electronic-vibrational spectroscopy for interfaces and surfaces is lacking.
View Article and Find Full Text PDFSurface properties of nanodroplets and microdroplets are intertwined with their immense applicability in biology, medicine, production, catalysis, the environment, and the atmosphere. However, many means for analyzing droplets and their surfaces are destructive, non-interface-specific, not conducted under ambient conditions, require sample substrates, conducted , or a combination thereof. For these reasons, a technique for surface-selective analyses under any condition is necessary.
View Article and Find Full Text PDFBehavioral variant frontotemporal dementia is characterized by heterogeneous frontal, insular, and anterior temporal atrophy patterns that vary along left-right and dorso-ventral axes. Little is known about how these structural imbalances impact clinical symptomatology. The goal of this study was to assess the frequency of frontotemporal asymmetry (right- or left-lateralization) and dorsality (ventral or dorsal predominance of atrophy) and to investigate their clinical correlates.
View Article and Find Full Text PDFObjective: Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers.
Methods: We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses.
Background: The influence of hippocampal connectivity on memory performance is well established in individuals with high educational attainment. However, the role of hippocampal connectivity in illiterate populations remains poorly understood.
Methods: Thirty-five illiterate adults were administered a literacy assessment (Test of Functional Health Literacy in Adults - TOFHLA), structural and resting state functional MRI and an episodic memory test (Free and Cued Selective Reminding Test).
The electrocatalytic oxygen evolution reaction (OER) is important for many renewable energy technologies. Developing cost-effective electrocatalysts with high performance remains a great challenge. Here, we successfully demonstrate our novel interface catalyst comprised of NiFe-based layered double hydroxides (NiFe-LDH) vertically immobilized on a two-dimensional MXene (TiCT) surface.
View Article and Find Full Text PDFPhotoinduced relaxation processes at interfaces are intimately related to many fields such as solar energy conversion, photocatalysis, and photosynthesis. Vibronic coupling plays a key role in the fundamental steps of the interface-related photoinduced relaxation processes. Vibronic coupling at interfaces is expected to be different from that in bulk due to the unique environment.
View Article and Find Full Text PDFChemical- and enzyme-coated beads (ChemBeads and EnzyBeads) were introduced recently as a universal strategy for the accurate dispensing of various solids in submilligram quantities using automated instrumentation or manual dispensing. The coated beads are prepared using a resonant acoustic mixer (RAM)-an instrument that may be available only to well-established facilities. In this study, we evaluated alternative coating methods for preparing ChemBeads and EnzyBeads without the use of a RAM.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
September 2023
Background: Treatment-resistant depression (TRD) refers to patients with major depressive disorder who do not remit after 2 or more antidepressant trials. TRD is common and highly debilitating, but its neurobiological basis remains poorly understood. Recent neuroimaging studies have revealed cortical connectivity gradients that dissociate primary sensorimotor areas from higher-order associative cortices.
View Article and Find Full Text PDF