The organization of disordered sounds into the ordered structures of music can be understood through an analogy to the emergent ordering of physical systems undergoing phase transitions. This work builds off a prior mean-field model for pitch in music [J. Berezovsky, Sci.
View Article and Find Full Text PDFWe investigate the critical phenomena emerging from a statistical mechanics model of musical harmony on a three-dimensional (3D) lattice, and the resulting structure of the ordered phase. In this model, each lattice site represents a tone, with nearest neighbors interacting via the perception of dissonance between them. With dissonance assumed to be an octave-wise periodic function of pitch difference, this model is a 3D XY system with the same symmetry and dimensionality as superfluid helium and models of the cosmological axion field.
View Article and Find Full Text PDFWe describe a new approach to scanning magneto-optical Kerr effect (MOKE) microscopy in which two opto-mechanical choppers modulate the spatial profile of a probe laser beam to separately encode all three magnetization components at different frequencies and phases in one signal. We demonstrate this multiplexed technique in two representative regimes: the equilibrium and non-equilibrium response of a magnetic vortex to a changing magnetic field. We observe the translation of the vortex state in equilibrium and the spiraling gyrotropic trajectory of the vortex position out of equilibrium.
View Article and Find Full Text PDFQuantum emitters located in proximity to a metal nanostructure individually transfer their energy via near-field excitation of surface plasmons. The energy transfer process increases the spontaneous emission (SE) rate due to plasmon-enhanced local field. Here, we demonstrate a significant acceleration of the quantum emitter SE rate in a plasmonic nanocavity due to cooperative energy transfer (CET) from plasmon-correlated emitters.
View Article and Find Full Text PDFMusic, while allowing nearly unlimited creative expression, almost always conforms to a set of rigid rules at a fundamental level. The description and study of these rules, and the ordered structures that arise from them, is the basis of the field of music theory. Here, I present a theoretical formalism that aims to explain why basic ordered patterns emerge in music, using the same statistical mechanics framework that describes emergent order across phase transitions in physical systems.
View Article and Find Full Text PDFWe demonstrate atomic force microscope (AFM) imaging using dielectrophoresis (DEP) with coaxial probes. DEP provides force contrast allowing coaxial probes to image with enhanced spatial resolution. We model a coaxial probe as an electric dipole to provide analytic formulas for DEP between a dipole, dielectric spheres, and a dielectric substrate.
View Article and Find Full Text PDFWe study conductance fluctuations (CF) and the sensitivity of the conductance to the motion of a single scatterer in two-dimensional massless Dirac systems. Our extensive numerical study finds limits to the predicted universal value of CF. We find that CF are suppressed for ballistic systems near the Dirac point and approach the universal value at sufficiently strong disorder.
View Article and Find Full Text PDFThe aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate.
View Article and Find Full Text PDFGraphene has opened new avenues of research in quantum transport, with potential applications for coherent electronics. Coherent transport depends sensitively on scattering from microscopic disorder present in graphene samples: electron waves traveling along different paths interfere, changing the total conductance. Weak localization is produced by the coherent backscattering of waves, while universal conductance fluctuations are created by summing over all paths.
View Article and Find Full Text PDF