In this work, we: (i) review likelihood-based inference for parameter estimation and the construction of confidence regions; and (ii) explore the use of techniques from information geometry, including geodesic curves and Riemann scalar curvature, to supplement typical techniques for uncertainty quantification, such as Bayesian methods, profile likelihood, asymptotic analysis and bootstrapping. These techniques from information geometry provide data-independent insights into uncertainty and identifiability, and can be used to inform data collection decisions. All code used in this work to implement the inference and information geometry techniques is available on GitHub.
View Article and Find Full Text PDFTumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids.
View Article and Find Full Text PDFJ R Soc Interface
August 2021
Optimal control theory provides insight into complex resource allocation decisions. The forward-backward sweep method (FBSM) is an iterative technique commonly implemented to solve two-point boundary value problems arising from the application of Pontryagin's maximum principle (PMP) in optimal control. The FBSM is popular in systems biology as it scales well with system size and is straightforward to implement.
View Article and Find Full Text PDFBacteria invest in a slow-growing subpopulation, called persisters, to ensure survival in the face of uncertainty. This hedging strategy is remarkably similar to financial hedging, where diversifying an investment portfolio protects against economic uncertainty. We provide a new, to our knowledge, theoretical foundation for understanding cellular hedging by unifying the study of biological population dynamics and the mathematics of financial risk management through optimal control theory.
View Article and Find Full Text PDFStrategic management of populations of interacting biological species routinely requires interventions combining multiple treatments or therapies. This is important in key research areas such as ecology, epidemiology, wound healing and oncology. Despite the well developed theory and techniques for determining single optimal controls, there is limited practical guidance supporting implementation of combination therapies.
View Article and Find Full Text PDFAcute myeloid leukaemia (AML) is a blood cancer affecting haematopoietic stem cells. AML is routinely treated with chemotherapy, and so it is of great interest to develop optimal chemotherapy treatment strategies. In this work, we incorporate an immune response into a stem cell model of AML, since we find that previous models lacking an immune response are inappropriate for deriving optimal control strategies.
View Article and Find Full Text PDFEmbryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2015
We consider the motion of a diffusive population on a growing domain, 0