Publications by authors named "Jessberger R"

Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis.

View Article and Find Full Text PDF

Rolf Jessberger is Professor and Chairman at the Institute of Physiological Chemistry, and Faculty of Medicine at the Technische Universität Dresden. We asked him about his recent article published in Life Science Alliance (LSA) and his experience in science thus far.

View Article and Find Full Text PDF

Previous data showed that meiotic cohesin SMC1β protects spermatocyte telomeres from damage. The underlying reason, however, remained unknown as the expressions of telomerase and shelterin components were normal in β spermatocytes. Here.

View Article and Find Full Text PDF

Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients.

View Article and Find Full Text PDF

Objective: Age-associated/autoimmune B cells (ABCs) are an emerging B cell subset with aberrant expansion in systemic lupus erythematosus. ABC generation and differentiation exhibit marked sexual dimorphism, and Toll-like receptor 7 (TLR-7) engagement is a key contributor to these sex differences. ABC generation is also controlled by interleukin-21 (IL-21) and its interplay with interferon-γ and IL-4.

View Article and Find Full Text PDF

In T cells, processes such as migration and immunological synapse formation are accompanied by the dynamic reorganization of the actin cytoskeleton, which has been suggested to be mediated by regulators of RhoGTPases and by F-actin bundlers. SWAP-70 controls F-actin dynamics in various immune cells, but its role in T cell development and function has remained incompletely understood. CD4 regulatory T (Treg) cells expressing the transcription factor Foxp3 employ diverse mechanisms to suppress innate and adaptive immunity, which is critical for maintaining immune homeostasis and self-tolerance.

View Article and Find Full Text PDF

Proper chromosome segregation is essential to avoid aneuploidy, yet this process fails with increasing age in mammalian oocytes. Here we report a role for the scarcely described protein CENP-V in oocyte spindle formation and chromosome segregation. We show that depending on the oocyte maturation state, CENP-V localizes to centromeres, to microtubule organizing centers, and to spindle microtubules.

View Article and Find Full Text PDF

Crosslinking of FcεRI-bound IgE triggers the release of a large number of biologically active, potentially anaphylactic compounds by mast cells. FcεRI activation ought to be well-controlled to restrict adverse activation. As mast cells are embedded in tissues, adhesion molecules may contribute to limiting premature activation.

View Article and Find Full Text PDF

Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11cT-bet B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs.

View Article and Find Full Text PDF

Loss of FLG causes ichthyosis vulgaris. Reduced FLG expression compromises epidermal barrier function and is associated with atopic dermatitis, allergy, and asthma. The flaky tail mouse harbors two mutations that affect the skin barrier, Flg, resulting in hypomorphic FLG expression, and Tmem79, inactivating TMEM79.

View Article and Find Full Text PDF

Although GM-CSF has been widely used in dendritic cell (DC) research, the mechanisms, factors, and signals regulating steady-state differentiation and maturation of GM-CSF-dependent DCs are insufficiently known. We found that the absence, individually or combined, of the related proteins DEF6 and SWAP-70 strongly enhances differentiation of murine GM-CSF-derived DCs. Contrasting SWAP-70, control through DEF6 does not depend on RHOA activation.

View Article and Find Full Text PDF

In mitotic cells, establishment of sister chromatid cohesion requires acetylation of the cohesin subunit SMC3 (acSMC3) by ESCO1 and/or ESCO2. Meiotic cohesin plays additional but poorly understood roles in the formation of chromosome axial elements (AEs) and synaptonemal complexes. Here, we show that levels of ESCO2, acSMC3, and the pro-cohesion factor sororin increase on meiotic chromosomes as homologs synapse.

View Article and Find Full Text PDF

F-actin binding and bundling are crucial to a plethora of cell processes, including morphogenesis, migration, adhesion and many others. SWAP-70 was recently described as an F-actin-binding and -bundling protein. Fluorescence cross-correlation spectroscopy measurements with purified recombinant SWAP-70 confirmed that it forms stable oligomers that facilitate F-actin bundling.

View Article and Find Full Text PDF

Study Question: Are sequence variants in the stromal antigen 3 (STAG3) gene a cause for non-obstructive azoospermia (NOA) in infertile human males?

Summary Answer: Sequence variants affecting protein function of STAG3 cause male infertility due to meiotic arrest.

What Is Known Already: In both women and men, STAG3 encodes for a meiosis-specific protein that is crucial for the functionality of meiotic cohesin complexes. Sequence variants in STAG3 have been reported to cause meiotic arrest in male and female mice and premature ovarian failure in human females, but not in infertile human males so far.

View Article and Find Full Text PDF

Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling.

View Article and Find Full Text PDF

Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins.

View Article and Find Full Text PDF

Age-associated B cells (ABCs) are a subset of B cells dependent on the transcription factor T-bet that accumulate prematurely in autoimmune settings. The pathways that regulate ABCs in autoimmunity are largely unknown. SWAP-70 and DEF6 (also known as IBP or SLAT) are the only two members of the SWEF family, a unique family of Rho GTPase-regulatory proteins that control both cytoskeletal dynamics and the activity of the transcription factor IRF4.

View Article and Find Full Text PDF

The cohesin complex is built upon the SMC1/SMC3 heterodimer, and mammalian meiocytes feature two variants of SMC1 named SMC1α and SMC1β. It is unclear why these two SMC1 variants have evolved. To determine unique versus redundant functions of SMC1β, we asked which of the known functions of SMC1β can be fulfilled by SMC1α.

View Article and Find Full Text PDF

Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T) cells, is critical as aberrant T cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex.

View Article and Find Full Text PDF

Asymmetric cell divisions depend on the precise placement of the spindle apparatus. In mammalian oocytes, spindles assemble close to the cell's center, but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, nondeveloping polar bodies at anaphase. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development.

View Article and Find Full Text PDF

Osteoclasts are bone resorbing cells acting as key mediators of bone disorders. Upon adhesion to bone, osteoclasts polarize and reorganize their cytoskeleton to generate a ring-like F-actin-rich structure, the sealing zone, wherein the osteoclast's resorptive organelle, the ruffled border, is formed. The dynamic self-organization of actin-rich adhesive structures, the podosomes, from clusters to belts is crucial for osteoclast-mediated bone degradation.

View Article and Find Full Text PDF

Lipids affect the membrane properties determining essential biological processes. Earlier studies have suggested a role of switch-activated protein 70 (SWAP-70) in lipid raft formation of dendritic cells. We used lipidomics combined with genetic and biochemical assays to analyze the role of SWAP-70 in lipid dynamics.

View Article and Find Full Text PDF

Tudor containing protein 6 (TDRD6) is a male germ line-specific protein essential for chromatoid body (ChB) structure, elongated spermatid development and male fertility. Here we show that in meiotic prophase I spermatocytes TDRD6 interacts with the key protein arginine methyl transferase PRMT5, which supports splicing. TDRD6 also associates with spliceosomal core protein SmB in the absence of RNA and in an arginine methylation dependent manner.

View Article and Find Full Text PDF