Arterial media calcification or pathological deposition of calcium-phosphate crystals in the vessel wall contributes significantly to the high mortality rate observed in patients with CKD. Extracellular nucleotides (ie, ATP or UTP) regulate the arterial calcification process by interacting with (1) purinergic receptors and (2) breakdown via ecto-nucleotidases, such as ectonucleotide pyrophosphatase/phosphodiesterase NPP1 or NPP3, affecting the local levels of calcification inhibitor, pyrophosphate, and stimulator inorganic phosphate (PP/P ratio). Also, it has been shown that ATP analogs (ie, β,γ-methylene-ATP [β,γ-meATP]) inhibit vascular smooth muscle cell calcification in vitro.
View Article and Find Full Text PDFObjective: Fibrotic tissues are characterized by excessive crosslinking between extracellular matrix (ECM) proteins, rendering them more resistant to degradation. Although increased crosslinking of ECM is thought to play an important role for progression of tissue fibrosis, enhanced ECM crosslinking has not yet been targeted therapeutically in systemic sclerosis (SSc). Here, we investigated the role of transglutaminase 2 (TG2), a central crosslinking enzyme, in the activation of SSc fibroblasts.
View Article and Find Full Text PDFVascular smooth muscle cells (VSMCs) are the main stromal cells in the medial layer of the vascular wall. These cells produce the extracellular matrix (ECM) and are involved in many pathological changes in the vascular wall. Semicarbazide-sensitive amine oxidase (SSAO) and lysyl oxidase (LOX) are vascular enzymes associated with the development of atherosclerosis.
View Article and Find Full Text PDFArterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H S) and glutathione (GSH) from its deacetylation to l-cysteine.
View Article and Find Full Text PDFArterial medial calcification (AMC), the deposition of hydroxyapatite in the medial layer of the arteries, is a known risk factor for cardiovascular events. Oxidative stress is a known inducer of AMC and endogenous antioxidants, such as glutathione (GSH), may prevent calcification. GSH synthesis, however, can be limited by cysteine levels.
View Article and Find Full Text PDFPurinergic Signal
September 2019
Arterial medial calcification (AMC) has been associated with phenotypic changes in vascular smooth muscle cells (VSMCs) that reportedly makes them more osteoblast-like. Previous work has shown that ATP/UTP can inhibit AMC directly via P2 receptors and indirectly by NPP1-mediated hydrolysis to produce the mineralisation inhibitor, pyrophosphate (PP). This study investigated the role of P2X receptors in the inhibitory effects of extracellular nucleotides on VSMC calcification.
View Article and Find Full Text PDFArterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, in the medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. This study used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely used in vitro models of AMC and bone formation.
View Article and Find Full Text PDFBone cells constitutively release ATP into the extracellular environment where it acts locally via P2 receptors to regulate bone cell function. Whilst P2Y receptor stimulation regulates bone mineralisation, the functional effects of this receptor in osteoclasts remain unknown. This investigation used the P2Y receptor knockout ( ) mouse model to investigate the role of this receptor in bone.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
Smooth muscle cells (SMC) are the predominant cell type involved in the pathogenesis of atherosclerosis, vascular calcification and restenosis after angioplasty; however, they are also important in the de novo formation of blood vessels through differentiation of mesenchymal cells under the influence of mediators secreted by endothelial cells. In angiogenesis, vascular SMC are formed by proliferation of existing SMC or maturation and differntiation of pericytes. Experimental findings have demonstrated a potential role of putative smooth muscle progenitor cells in the circulation or within adult tissues and the perivascular adventitia in the development of atherosclerotic plaques, restenosis and angiogenesis.
View Article and Find Full Text PDFExtracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow.
View Article and Find Full Text PDFDrugs used in the treatment of type 2 diabetes and cardiovascular disease, specifically peroxisome proliferator-activated receptor (PPAR) agonists, have been reported to affect bone cell function and fracture risk. In this study, we assessed the direct effects of PPAR-γ agonists (rosiglitazone and troglitazone), used in the treatment of diabetes, and a PPAR-α agonist (fenofibrate), used to treat hyperlipidaemia, on the function of primary osteoblasts and osteoclasts. Formation of 'trabecular' bone structures by rat calvarial osteoblasts was reduced by up to 85% in cultures treated with rosiglitazone and by 45% in troglitazone-treated or fenofibrate-treated cultures; at the same time, lipid droplet formation was increased by 40-70%.
View Article and Find Full Text PDFIt has long been known that core body temperature declines with age, with temperatures of 35.5°C or below common in the elderly. However, the effects of temperature reduction on bone cell function and skeletal homeostasis have been little studied.
View Article and Find Full Text PDFExtracellular nucleotides, signalling through P2 receptors, regulate the function of both osteoblasts and osteoclasts. Osteoblasts are known to express multiple P2 receptor subtypes (P2X2,5,7 and P2Y(1),(2,4,6)), levels of which change during differentiation. ATP and UTP potently inhibit bone mineralisation in vitro, an effect mediated, at least in part, via the P2Y(2) receptor.
View Article and Find Full Text PDFClopidogrel (Plavix), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation, and activity in vitro; and (2) trabecular and cortical bone parameters in vivo.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
August 2012
Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signaling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and osteoclast function.
View Article and Find Full Text PDF