Publications by authors named "Jess Lycoops"

The electron-donor and unique redox properties of the tetrathiafulvalene (TTF, 1) moiety have led to diverse applications in many areas of chemistry. Monopyrrolotetrathiafulvalenes (MPTTFs, 4) and bispyrrolotetrathiafulvalenes (BPTTFs, 5) are useful structural motifs and have found widespread use in fields such as supramolecular chemistry and molecular electronics. Protocols enabling the synthesis of functionalised MPTTFs and BPTTFs are therefore of broad interest.

View Article and Find Full Text PDF

Three new hybrid gated mesoporous materials (SN3 -1, SNH2 -2, and SN3 -3) loaded with the dye [Ru(bipy)3 ](2+) (bipy=bipyridine) and capped with different tetrathiafulvalene (TTF) derivatives (having different sizes and shapes and incorporating different numbers of sulfur atoms) have been prepared. The materials SN3 -1 and SN3 -3 are functionalized on their external surfaces with the TTF derivatives 1 and 3, respectively, which were attached by employing the "click" chemistry reaction, whereas SNH2 -2 incorporates the TTF derivative 2, which was anchored to the solid through an amidation reaction. The final gated materials have been characterized by standard techniques.

View Article and Find Full Text PDF

The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through -(CH(2))(6)S- groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning tunneling microscopy (STM) molecular break junction configuration.

View Article and Find Full Text PDF

We have prepared two fluorescent dyes derived from 8-(4-tolyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene with phenoxy and (o-bromo)phenoxy substituents at the 3,5-positions by a novel nucleophilic substitution reaction of the corresponding 3,5-dichloroBODIPY analogue. UV-vis absorption, steady-state and time-resolved fluorimetry have been used to investigate their solvent-dependent photophysical properties. The two BODIPY derivatives show narrow absorption and emission bands and display small Stokes shifts.

View Article and Find Full Text PDF