Publications by authors named "Jess L Vickruck"

The Colorado potato beetle ( (Say)) can cause extensive damage to agricultural crops worldwide and is a significant insect pest. This insect is notorious for its ability to evade various strategies deployed to control its spread and is known for its relative ease in developing resistance against different insecticides. Various molecular levers are leveraged by for this resistance to occur, and a complete picture of the genes involved in this process is lacking.

View Article and Find Full Text PDF

How do researchers choose their study species? Some choices are based on ecological or economic importance, some on ease of study, some on tradition-but could the name of a species influence researcher decisions? We asked whether phytophagous arthropod species named after their host plants were more likely to be assayed for host-associated genetic differentiation (or 'HAD'; the evolution of cryptic, genetically isolated host specialists within an apparently more generalist lineage). We chose 30 arthropod species (from a Google Scholar search) for which a HAD hypothesis has been tested. We traced the etymologies of species names in the 30 corresponding genera, and asked whether HAD tests were more frequent among species whose etymologies were based on host-plant names (e.

View Article and Find Full Text PDF

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect pest that threatens potato crops. Multiple options exist to limit the impact of this pest even though insecticides remain a primary option for its control. Insecticide resistance has been reported in Colorado potato beetles and a better understanding of the molecular players underlying such process is of utmost importance to optimize the tools used to mitigate the impact of this insect.

View Article and Find Full Text PDF

The Colorado potato beetle ( (Say)) is known for its capacity to cause significant damages to potato crops worldwide. Multiple approaches have been considered to limit its spread including the use of a diverse arsenal of insecticides. Unfortunately, this insect frequently develops resistance towards these compounds.

View Article and Find Full Text PDF

Mitochondria have been suggested to be paramount for temperature adaptation in insects. Considering the large range of environments colonized by this taxon, we hypothesized that species surviving large temperature changes would be those with the most flexible mitochondria. We thus investigated the responses of mitochondrial oxidative phosphorylation (OXPHOS) to temperature in three flying insects: the honeybee (), the fruit fly () and the Colorado potato beetle ().

View Article and Find Full Text PDF