Publications by authors named "Jesper Z Haeggstrom"

The molecular mechanisms by which worm parasites evade host immunity are incompletely understood. In a mouse model of intestinal helminth infection using (), we show that helminthic glutamate dehydrogenase (heGDH) drives parasite chronicity by suppressing macrophage-mediated host defense. Combining RNA-seq, ChIP-seq, and targeted lipidomics, we identify prostaglandin E (PGE) as a major immune regulatory mechanism of heGDH.

View Article and Find Full Text PDF

While the acute inflammatory response to harmful stimuli is protective, unrestrained neutrophil swarming drives collateral tissue damage and inflammation. Biosynthesized from omega-3 essential polyunsaturated fatty acids, resolvins are a family of signaling molecules produced by immune cells within the resolution phase to orchestrate return to homeostasis. Understanding the mechanisms that govern biosynthesis of these potent molecules gives insight into stimulating endogenous resolution and offers fresh opportunities for preventing and treating excessive inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent therapies for malignant melanoma show promise, but most patients develop resistance, highlighting the need for new drug targets focused on redox homeostasis and lipid peroxidase pathways to improve treatment outcomes.
  • - Researchers found that microsomal glutathione S-transferase 1 (MGST1), a specific enzyme, is highly expressed in drug-resistant melanomas and plays a crucial role in tumor spread and response to therapy.
  • - Reducing MGST1 levels in melanoma cells increased oxidative stress and made them more susceptible to immune attack and anticancer drugs, leading to reduced metastasis and improved survival in mouse models.
View Article and Find Full Text PDF

Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage.

View Article and Find Full Text PDF

Recent advancements in the treatment of melanoma are encouraging, but there remains a need to identify additional therapeutic targets. We identify a role for microsomal glutathione transferase 1 (MGST1) in biosynthetic pathways for melanin and as a determinant of tumor progression. Knockdown (KD) of MGST1 depleted midline-localized, pigmented melanocytes in zebrafish embryos, while in both mouse and human melanoma cells, loss of MGST1 resulted in a catalytically dependent, quantitative, and linear depigmentation, associated with diminished conversion of L-dopa to dopachrome (eumelanin precursor).

View Article and Find Full Text PDF

Specialized pro-resolving lipid mediators play key functions in the resolution of the acute inflammatory response. Herein, we elucidate the stereochemical structure of the new 4S,5R-RCTR1, a cysteinyl-resolvin, recently uncovered in human leukocytes incubated with a 4S,5S-epoxy-resolvin intermediate, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and ultra-violet (UV) spectrophotometry. With this approach, the physical properties of the new mediator prepared by total organic synthesis were matched to enzymatically produced biogenic material.

View Article and Find Full Text PDF

The 5-lipoxygenase (5-LOX) pathway gives rise to bioactive inflammatory lipid mediators, such as leukotrienes (LTs). 5-LOX carries out the oxygenation of arachidonic acid to the 5-hydroperoxy derivative and then to the leukotriene A epoxide which is converted to a chemotactic leukotriene B (LTB) by leukotriene A hydrolase (LTAH). In addition, LTAH possesses aminopeptidase activity to cleave the N-terminal proline of a pro-inflammatory tripeptide, prolyl-glycyl-proline (PGP).

View Article and Find Full Text PDF

Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) results in decreased production of proinflammatory PGE and can lead to shunting of PGH into the prostaglandin D (PGD)/15-deoxy-Δ-prostaglandin J (15dPGJ) pathway. 15dPGJ forms Michael adducts with thiol-containing biomolecules such as GSH or cysteine residues on target proteins and is thought to promote resolution of inflammation. We aimed to elucidate the biosynthesis and metabolism of 15dPGJ via conjugation with GSH, to form 15dPGJ-glutathione (15dPGJ-GS) and 15dPGJ-cysteine (15dPGJ-Cys) conjugates and to characterize the effects of mPGES-1 inhibition on the PGD/15dPGJ pathway in mouse and human immune cells.

View Article and Find Full Text PDF

Leukotrienes are potent immune-regulating lipid mediators with patho-genic roles in inflammatory and allergic diseases, particularly asthma. These autacoids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, metabolic, and tumor diseases. Biosynthesis of leukotrienes involves release and oxidative metabolism of arachidonic acid and proceeds via a set of cytosolic and integral membrane enzymes that are typically expressed by cells of the innate immune system.

View Article and Find Full Text PDF

Eicosanoids are a family of bioactive compounds derived from arachidonic acid (AA) that play pivotal roles in physiology and disease, including inflammatory conditions of multiple organ systems. The biosynthesis of eicosanoids requires a series of catalytic steps that are controlled by designated enzymes, which can be regulated by inflammatory and stress signals via transcriptional and translational mechanisms. In the past decades, evidence have emerged indicating that G-protein coupled receptors (GPCRs) can sense extracellular metabolites, and regulate inflammatory responses including eicosanoid production.

View Article and Find Full Text PDF

The ER stress and Unfolded Protein Response (UPR) component inositol-requiring enzyme 1α (IRE1α) has been linked to inflammation and lipid mediator production. Here we report that the potent IRE1α inhibitor, KIRA6, blocks leukotriene biosynthesis in human phagocytes activated with lipopolysaccharide (LPS) plus N-formyl-methionyl-leucyl-phenylalanine (fMLP) or thapsigargin (Tg). The inhibition affects both leukotriene B (LTB) and cysteinyl leukotriene (cys-LTs) production at submicromolar concentration.

View Article and Find Full Text PDF

Background: SUCNR1 is a sensor of extracellular succinate, a Krebs cycle intermediate generated in excess during oxidative stress and has been linked to metabolic regulation and inflammation. While mast cells express SUCNR1, its role in mast cell reactivity and allergic conditions such as asthma remains to be elucidated.

Methods: Cord blood-derived mast cells and human mast cell line LAD-2 challenged by SUCNR1 ligands were analyzed for the activation and mediator release.

View Article and Find Full Text PDF

Human phagocytes have key functions in the resolution of inflammation. Here, we assessed the role of the proposed 4,5-epoxy-resolvin intermediate in the biosynthesis of both resolvin D3 and resolvin D4. We found that human neutrophils converted this synthetic intermediate to resolvin D3 and resolvin D4.

View Article and Find Full Text PDF

Acetaminophen (APAP)-related toxicity is caused by the formation of -acetyl -benzoquinone imine (NAPQI), a reactive metabolite able to covalently bind to protein thiols. A targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, using multiple reaction monitoring (MRM), was developed to measure APAP binding on selected target proteins, including glutathione -transferases (GSTs). In vitro incubations with CYP3A4 were performed to form APAP in the presence of different proteins, including four purified GST isozymes.

View Article and Find Full Text PDF

Microsomal glutathione S-transferase 2 (MGST2) produces leukotriene C, key for intracrine signaling of endoplasmic reticulum (ER) stress, oxidative DNA damage and cell death. MGST2 trimer restricts catalysis to only one out of three active sites at a time, but the molecular basis is unknown. Here, we present crystal structures of human MGST2 combined with biochemical and computational evidence for a concerted mechanism, involving local unfolding coupled to global conformational changes that regulate catalysis.

View Article and Find Full Text PDF

Acute inflammation is a protective reaction by the immune system in response to invading pathogens or tissue damage. Ideally, the response should be localized, self-limited, and returning to homeostasis. If not resolved, acute inflammation can result in organ pathologies leading to chronic inflammatory phenotypes.

View Article and Find Full Text PDF

The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.

View Article and Find Full Text PDF

Drug-induced toxicity has, in many cases, been linked to oxidative metabolism resulting in the formation of reactive metabolites and subsequent covalent binding to biomolecules. Two structurally related antipsychotic drugs, clozapine (CLZ) and olanzapine (OLZ), are known to form similar nitrenium ion reactive metabolites. CLZ-derived reactive metabolites have been linked to agranulocytosis and hepatotoxicity.

View Article and Find Full Text PDF

Eicosanoids are potent lipid mediators involved in central physiological processes such as hemostasis, renal function and parturition. When formed in excess, eicosanoids become critical players in a range of pathological conditions, in particular pain, fever, arthritis, asthma, cardiovascular disease and cancer. Eicosanoids are generated via oxidative metabolism of arachidonic acid along the cyclooxygenase (COX) and lipoxygenase (LOX) pathways.

View Article and Find Full Text PDF

Background: Succinate is a Krebs cycle intermediate whose formation is enhanced under metabolic stress, and for which a selective sensor GPR91 has been identified on various cell types including platelets. Platelet-derived eicosanoids play pivotal roles in platelet activation/aggregation, which is key to thrombus formation and progression of atherothrombosis.

Objectives: This study aims to decipher the molecular mechanism(s) and potential involvement of eicosanoids in succinate enhanced platelet activation/aggregation.

View Article and Find Full Text PDF

Resolution of inflammation is an active process regulated by specialized proresolving mediators where we identified 3 new pathways producing allylic epoxide-derived mediators that stimulate regeneration [, peptido-conjugates in tissue regeneration (CTRs)]. Here, using self-limited peritonitis in mice, we identified endogenous maresin (MaR) CTR (MCTR), protectin (PD) CTR (PCTR), and resolvin CTR in infectious peritoneal exudates and distal spleens, as well as investigated enzymes involved in their biosynthesis. PCTRs were identified to be temporally regulated in peritoneal exudates and spleens.

View Article and Find Full Text PDF

The epidithiodioxopiperazine gliotoxin is a virulence factor of Aspergillus fumigatus, the most important airborne fungal pathogen of humans. Gliotoxin suppresses innate immunity in invasive aspergillosis, particularly by compromising neutrophils, but the underlying molecular mechanisms remain elusive. Neutrophils are the first responders among innate immune cells recruited to sites of infection by the chemoattractant leukotriene (LT)B that is biosynthesized by 5-lipoxygenase and LTA hydrolase (LTAH).

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is an asymptomatic dilatation of the vessel wall exceeding the normal vessel diameter by 50%, accompanied by intramural thrombus formation. Since the aneurysm can rupture, AAA is a life-threatening vascular disease, which may be amenable to surgical repair. At present, no pharmacological therapy for AAA is available.

View Article and Find Full Text PDF

Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract - in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin.

View Article and Find Full Text PDF

Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl-induced AAA at a dose comparable to human medical practice.

View Article and Find Full Text PDF