Inverse agonists of the nuclear receptor RORC2 have been widely pursued as a potential treatment for a variety of autoimmune diseases. We have discovered a novel series of isoindoline-based inverse agonists of the nuclear receptor RORC2, derived from our recently disclosed RORC2 inverse agonist . Extensive structure-activity relationship (SAR) studies resulted in AZD0284 (), which combined potent inhibition of IL-17A secretion from primary human T17 cells with excellent metabolic stability and good PK in preclinical species.
View Article and Find Full Text PDFThe further optimization of a recently disclosed series of inverse agonists of the nuclear receptor RORC2 is described. Investigations into the left-hand side of compound , guided by X-ray crystal structures, led to the substitution of the 4-aryl-thiophenyl residue with the hexafluoro-2-phenyl-propan-2-ol moiety. This change resulted in to compound , which combined improved drug-like properties with good cell potency and a significantly lower dose, using an early dose to man prediction.
View Article and Find Full Text PDFRetinoic acid receptor related orphan receptor γt (RORγt), has been identified as the master regulator of T17-cell function and development, making it an attractive target for the treatment of autoimmune diseases by a small-molecule approach. Herein, we describe our investigations on a series of 4-aryl-thienyl acetamides, which were guided by insights from X-ray cocrystal structures. Efforts in targeting the cofactor-recruitment site from the 4-aryl group on the thiophene led to a series of potent binders with nanomolar activity in a primary human-T17-cell assay.
View Article and Find Full Text PDFA series of isoindolinone compounds have been developed showing good in vitro potency on the Kv1.5 ion channel. By modification of two side chains on the isoindolinone scaffold, metabolically stable compounds with good in vivo PK profile could be obtained leaving the core structure unsubstituted.
View Article and Find Full Text PDFA series of lactam sulfonamides has been discovered and optimized as inhibitors of the Kv1.5 potassium ion channel for treatment of atrial fibrillation. In vitro structure-activity relationships from lead structure C to optimized structure 3y are described.
View Article and Find Full Text PDFTwo formally C-xylosylated analogs to 2-naphthyl beta-D-xylopyranoside, which is known to initiate priming of glucosaminoglycan chains, were synthesized by a position inversion of glucose (i.e., position 1 becomes position 5).
View Article and Find Full Text PDFCarbohydrates carrying an aromatic aglycon are important natural products and thus key synthetic targets. However, due to the electron-withdrawing properties of aromatic rings, phenols are difficult to glycosylate. This review covers the most common carbohydrate donors used for aromatic O-glycosylation (anomeric acetates, halides, trichloroacetimidates and thioglycosides) as well as some less common donors.
View Article and Find Full Text PDF