Publications by authors named "Jesper Boman"

Background: Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation.

View Article and Find Full Text PDF

Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection.

View Article and Find Full Text PDF

Coding sequence evolution is influenced by both natural selection and neutral evolutionary forces. In many species, the effects of mutation bias, codon usage, and GC-biased gene conversion (gBGC) on gene sequence evolution have not been detailed. Quantification of how these forces shape substitution patterns is therefore necessary to understand the strength and direction of natural selection.

View Article and Find Full Text PDF

Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) that differ considerably in their karyotype as a consequence of at least 27 chromosome fissions and fusions.

View Article and Find Full Text PDF

Seasonal environmental fluctuations provide formidable challenges for living organisms, especially small ectotherms such as butterflies. A common strategy to cope with harsh environments is to enter diapause, but some species avoid unsuitable conditions by migrating. Despite a growing understanding of migration in the life cycles of some butterfly species, it remains unknown how individuals register and store environmental cues to determine whether and where to migrate.

View Article and Find Full Text PDF

Our general understanding of the evolution of genome size (GS) is incomplete, and it has long been clear that GS does not reflect organismal complexity. Here, we assess the hypothesis that larger genomes may allow organisms to better cope with environmental variation. It is, for example, possible that genome expansion due to proliferation of transposable elements or gene duplications may affect the ability to regulate and fine-tune transcriptional profiles.

View Article and Find Full Text PDF

Recombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by breaking the linkage between selected and nearby neutral variants.

View Article and Find Full Text PDF

Avian genomes have perplexed researchers by being conservative in both size and rearrangements, while simultaneously holding the blueprints for a massive species radiation during the last 65 million years (My). Transposable elements (TEs) in bird genomes are relatively scarce but have been implicated as important hotspots for chromosomal inversions. In zebra finch (), long terminal repeat (LTR) retrotransposons have proliferated and are positively associated with chromosomal breakpoint regions.

View Article and Find Full Text PDF