Publications by authors named "Jesil Kasamkattil"

An model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities.

View Article and Find Full Text PDF

Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated.

View Article and Find Full Text PDF

Cell-based strategies for nucleus pulposus (NP) regeneration that adequately support the engraftment and functionality of therapeutic cells are still lacking. This study explores a scaffold-free approach for NP repair, which is based on spheroids derived from human nasal chondrocytes (NC), a resilient cell type with robust cartilage-regenerative capacity. We generated NC spheroids (NCS) in two types of medium (growth or chondrogenic) and analyzed their applicability for NP repair with regard to injectability, biomechanical and biochemical attributes, and integration potential in conditions simulating degenerative disc disease (DDD).

View Article and Find Full Text PDF