Photofunctionalization of implant materials with ultraviolet (UV) radiation have been subject of study in the last two decades, and previous research on CoCrMo discs have showed good results in terms of bioactivity and the findings of apatite-like crystals in vitro. In the current study, CoCrMo domes were photofunctionalized with UV radiation of 254 nm on their internal faces during 24 hr; they were implanted in rabbit tibia and remained for 3, 4, and 6 weeks. The potential to induce bone formation beneath the dome-shaped membranes was evaluated through morphometric, histologic, and density measurements; and the results were compared with those obtained under control untreated domes.
View Article and Find Full Text PDFObjective: To analyse a set of morphological features from digital radiographs (RX) and bone mineral density (BMD) values estimated from quantitative computerized tomography scans (QCT scans) of the knee joint of an osteoporotic rabbits, and to determine the relationship and correlation of these variables to be considered as an alternative diagnosis method.
Methods: The knee joint of rabbits (N = 9 ovariectomized and injected with of methylprednisolone sodium succinate (OVX + MPSS) and 3 sham operated healthy controls) were subjected to radiographic examination before the beginning of the study and after 6 weeks; after sacrifice, they were immediately scanned with a 64-channel CT. A set of morphological features was extracted from RX images and then subjected to Principal Component Analysis (PCA); BMD-values were calculated at different depths from the articular surface of the femur and the tibia.
Cr-Co-Mo (ASTM F75) alloy has been used in the medical environment, but its use as a rigid barrier membrane for supporting bone augmentation therapies has not been extensively investigated. In the present study, Cr-Co-Mo membranes of different heights were placed in New Zealand white, male rabbit tibiae to assess the quality and volume of new bone formation, without the use of additional factors. Animals were euthanized at 20, 30, 40, and 60 days.
View Article and Find Full Text PDFAlthough there are several studies of the ultraviolet (UV) light-mediated photofunctionalization of titanium for use as implant material, the underlying mechanism is not fully understood. However, the results of in vitro and in vivo studies are very encouraging. The use of UV photofunctionalization as a surface treatment on other implant materials, as the Cr-Co-Mo alloy, has not been explored in depth.
View Article and Find Full Text PDFBackground: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation.
Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment.