The phosphate (P)-solubilizing potential of rhizobia isolated from active root nodules of Brazilian native Mimosa and Desmodium was assessed. Out of the 15 strains selected, five Paraburkholderia isolated from Mimosa spp. grown in rocky outcrops stood out.
View Article and Find Full Text PDFThe rhizobia-Desmodium (Leguminosae, Papilionoideae) symbiosis is generally described by its specificity with alpha-rhizobia, especially with Bradyrhizobium. Our study aimed to isolate rhizobia from root nodules of native D. barbatum, D.
View Article and Find Full Text PDFSymbiotic Paraburkholderia have been increasingly studied in the past 20 years, especially when associated with Mimosa; however, studies with native/endemic species are still scarce. In this study, thirty strains were isolated from root nodules of native Mimosa paranapiacabae and M. micropteris in two locations of the Campos Gerais.
View Article and Find Full Text PDFArch Microbiol
September 2021
Bacteria belonging to the genus Paraburkholderia are capable of establishing symbiotic relationships with plants belonging to the Fabaceae (=Leguminosae) family and fixing the atmospheric nitrogen in specialized structures in the roots called nodules, in a process known as biological nitrogen fixation (BNF). In the nodulation and BNF processes several bacterial symbiotic genes are involved, but the relations between symbiotic, core genes and host specificity are still poorly studied and understood in Paraburkholderia. In this study, eight strains of nodulating nitrogen-fixing Paraburkholderia isolated in Brazil, together with described species and other reference strains were used to infer the relatedness between core (16S rDNA, recA) and symbiotic (nod, nif, fix) genes.
View Article and Find Full Text PDFArch Microbiol
August 2020
A polyphasic study was conducted with 11 strains trapped by Mimosa pudica and Phaseolus vulgaris grown in soils of the Brazilian Atlantic Forest. In the phylogenetic analysis of the 16S rRNA gene, one clade of strains (Psp1) showed higher similarity with Paraburkholderia piptadeniae STM7183 (99.6%), whereas the second (Psp6) was closely related to Paraburkholderia tuberum STM678 (99%).
View Article and Find Full Text PDFArch Microbiol
December 2019
A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7-98.
View Article and Find Full Text PDFFloristic surveys performed in "Campos Gerais" (Paraná, Brazil), an ecotone of Mata Atlântica and Cerrado biomes, highlights the richness and relative abundance of the family Fabaceae and point out the diversity and endemism of Mimosa spp. Our study reports the genetic diversity of rhizobia isolated from root nodules of native/endemic Mimosa gymnas Barneby in three areas of Guartelá State Park, an important conservation unit of "Campos Gerais". Soils of the sample areas were characterized as sandy, acid, poor in nutrients and organic matter.
View Article and Find Full Text PDFBackground: Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries.
View Article and Find Full Text PDFSample preparation is a critical step in two-dimensional gel electrophoresis (2-DE) of plant tissues. Here we describe a phenol/SDS procedure that, although greatly simplified, produced well-resolved and reproducible 2-DE profiles of protein extracts from soybean [Glycine max (L.) Merril] roots.
View Article and Find Full Text PDFBackground: Rhizobium tropici strain PRF 81 (= SEMIA 4080) has been used in commercial inoculants for application to common-bean crops in Brazil since 1998, due to its high efficiency in fixing nitrogen, competitiveness against indigenous rhizobial populations and capacity to adapt to stressful tropical conditions, representing a key alternative to application of N-fertilizers. The objective of our study was to obtain an overview of adaptive responses to heat stress of strain PRF 81, by analyzing differentially expressed proteins when the bacterium is grown at 28°C and 35°C.
Results: Two-dimensional gel electrophoresis (2DE) revealed up-regulation of fifty-nine spots that were identified by MALDI-TOF/TOF-TOF.
Rhizobium tropici strain PRF 81 is used in commercial inoculants for common-bean crops in Brazil because of its high efficiency in nitrogen fixation and, as in other strains belonging to this species, its tolerance of environmental stresses, representing a useful biological alternative to chemical nitrogen fertilizers. In this study, a proteomic reference map of PRF 81 was obtained by two-dimensional gel electrophoresis and MALDI-TOF/TOF-TOF mass spectrometry. In total, 115 spots representing 109 different proteins were successfully identified, contributing to a better understanding of the rhizobia-legume symbiosis and supporting, at proteomics level, a strong resemblance with agrobacteria.
View Article and Find Full Text PDFThe rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (=SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis.
View Article and Find Full Text PDFThe economic and ecological importance of the symbiosis of soybean with Bradyrhizobium japonicum strains is significant in several countries, particularly Brazil; however, up to now, only one complete and a draft genome for this species are available. In this study, we have obtained a proteomic reference map of B. japonicum strain CPAC 15 (=SEMIA 5079) - used in commercial inoculants for application to soybean crops in Brazil - grown under in vitro conditions.
View Article and Find Full Text PDFTwo variant strains of Bradyrhizobium japonicum, derived from SEMIA 566, adapted to the stressful environmental conditions of the Brazilian Cerrados and characterized by contrasting capacities for N(2) fixation, were compared by representational difference analysis (RDA). Twenty-four gene sequences that are unique to the highly effective strain S 370 were identified, eight showing high similarity to known genes, nine encoding putative proteins and seven representing conserved hypothetical or hypothetical proteins; they were classified in eight functional categories. Among those genes, some were highlighted for their known or potential functions in plant-microbe interactions.
View Article and Find Full Text PDFThe importance of horizontal gene transfer (HGT) in the evolution and speciation of bacteria has been emphasized; however, most studies have focused on genes clustered in pathogenesis and very few on symbiosis islands. Both soybean (Glycine max [L.] Merrill) and compatible Bradyrhizobium japonicum and Bradyrhizobium elkanii strains are exotic to Brazil and have been massively introduced in the country since the early 1960s, occupying today about 45% of the cropped land.
View Article and Find Full Text PDF