Adapting two-dimensional (2D) van der Walls bilayer heterostructure is an efficient technique for realizing fascinating properties and playing a key role in solar energy-driven water decomposition schemes. By means of first-principles calculations, this study reveals the intriguing potential of a novel 2D van der Walls hetero-bilayer consisting of GeC and AlN layer in the photocatalytic water splitting method to generate hydrogen. The GeC/AlN heterostructure has an appropriate band gap of 2.
View Article and Find Full Text PDFTwo-dimensional (2D) van der Waals (vdW) heterostructures made by vertical assembling of two different layers have drawn immense attention in the photocatalytic water disassociation process. Herein, we suggest a novel 2D/2D vdW heterobilayer consisting of silicon carbide (SiC) and aluminum nitride (AlN) as an exciting photocatalyst for solar-to-hydrogen conversion reactions using first-principles calculations. Notably, the heterostructure presents an inherent type-II band orientation wherein the photogenic holes and electrons are spatially separated in the SiC layer and the AlN layer, respectively.
View Article and Find Full Text PDF