Publications by authors named "Jesen Fagerness"

Pharmacogenetic/pharmacogenomic (PGx) testing is currently available for a wide range of health problems including cardiovascular disease, cancer, diabetes, autoimmune disorders, mental health disorders and infectious diseases. PGx contributes important information to the field of precision medicine by clarifying appropriate treatments for specific disease subtypes. Tangible benefits to patients including improved outcomes and reduced total health care costs have been observed.

View Article and Find Full Text PDF

Objectives: Pharmacogenetic testing as a means of guiding treatment decisions is beginning to see wider clinical use in psychiatry. The utility of this genetic information as it pertains to clinical decision making, treatment effectiveness, cost savings, and patient perception has not been fully characterized.

Study Design: In this retrospective study, we examined health claims data in order to assess medication adherence rates and healthcare costs for psychiatric patients.

View Article and Find Full Text PDF

Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD.

View Article and Find Full Text PDF

Objective: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date.

Method: The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls.

View Article and Find Full Text PDF

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 loci associated at P < 5 × 10(-8).

View Article and Find Full Text PDF

Purpose: To investigate whether the 2 subtypes of advanced age-related macular degeneration (AMD), choroidal neovascularization (CNV), and geographic atrophy (GA) segregate separately in families and to identify which genetic variants are associated with these 2 subtypes.

Design: Sibling correlation study and genome-wide association study (GWAS).

Participants: For the sibling correlation study, 209 sibling pairs with advanced AMD were included.

View Article and Find Full Text PDF

Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies.

View Article and Find Full Text PDF

Stress is a general risk factor for psychopathology, but the mechanisms underlying this relationship remain largely unknown. Animal studies and limited human research suggest that stress can induce anhedonic behavior. Moreover, emerging data indicate that genetic variation within the corticotropin-releasing hormone type 1 receptor gene (CRHR1) at rs12938031 may promote psychopathology, particularly in the context of stress.

View Article and Find Full Text PDF

Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls.

View Article and Find Full Text PDF

Posttraumatic stress disorder (PTSD) is a common and disabling anxiety disorder that may occur in the aftermath of exposure to potentially traumatic life events. PTSD is moderately heritable, but few specific molecular variants accounting for this heritability have been identified. Genes regulating the hypothalamic-pituitary-adrenal (HPA) axis, such as corticotrophin-releasing hormone type 1 receptor gene (CRHR1), have been implicated in traumatic-stress related phenotypes but have yet to be studied in relation to PTSD.

View Article and Find Full Text PDF

Purpose: Intermediate and large drusen usually precede advanced age-related macular degeneration (AMD). There is little information about which genes influence drusen accumulation. Discovery of genetic variants associated with drusen may lead to prevention and treatments of AMD in its early stages.

View Article and Find Full Text PDF

Tourette syndrome (TS) is a childhood-onset neuropsychiatric disorder that is familial and highly heritable. Although genetic influences are thought to play a significant role in the development of TS, no definite TS susceptibility genes have been identified to date. TS is believed to be genetically related to both obsessive-compulsive disorder (OCD) and grooming disorders (GD) such as trichotillomania (TTM).

View Article and Find Full Text PDF

Purpose: To determine if genetic variants that have been associated with age-related macular degeneration (AMD) have a differential effect on the risk of choroidal neovascularization (CNV) and geographic atrophy.

Design: Genetic association study.

Setting: Multicenter study.

View Article and Find Full Text PDF

Advanced age-related macular degeneration (AMD) is the leading cause of late onset blindness. We present results of a genome-wide association study of 979 advanced AMD cases and 1,709 controls using the Affymetrix 6.0 platform with replication in seven additional cohorts (totaling 5,789 unrelated cases and 4,234 unrelated controls).

View Article and Find Full Text PDF

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10(-75)), ARMS2 (P < 10(-59)), C2/CFB (P < 10(-20)), C3 (P < 10(-9)), and CFI (P < 10(-6)). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls).

View Article and Find Full Text PDF

Several studies support a genetic influence on obsessive-compulsive disorder (OCD) etiology. The role of glutamate as an important neurotransmitter affecting OCD pathophysiology has been supported by neuroimaging, animal model, medication, and initial candidate gene studies. Genes involved in glutamatergic pathways, such as the glutamate receptor, ionotropic, kainate 2 (GRIK2), have been associated with OCD in previous studies.

View Article and Find Full Text PDF

About 40% of the genetic variance of age-related macular degeneration (AMD) can be explained by a common variation at five common single-nucleotide polymorphisms (SNPs). We evaluated the degree to which these known variants explain the clustering of AMD in a group of densely affected families. We sought to determine whether the actual number of risk alleles at the five variants in densely affected families matched the expected number.

View Article and Find Full Text PDF

The TREK1 gene has been linked to a depression-resistant phenotype in rodents and antidepressant response in humans, but the neural mechanisms underlying these links are unclear. Because TREK1 is expressed in reward-related basal ganglia regions, it has been hypothesized that TREK1 genetic variation may be associated with anhedonic symptoms of depression. To investigate whether TREK1 genetic variation influences reward processing, we genotyped healthy individuals (n = 31) who completed a monetary incentive delay task during functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

Purpose: The joint effects of genetic, ocular, and environmental variables were evaluated and predictive models for prevalence and incidence of AMD were assessed.

Methods: Participants in the multicenter Age-Related Eye Disease Study (AREDS) were included in a prospective evaluation of 1446 individuals, of which 279 progressed to advanced AMD (geographic atrophy or neovascular disease) and 1167 did not progress during 6.3 years of follow-up.

View Article and Find Full Text PDF

A growing body of literature finds gender differences in ADHD. However, little is known about the causes of these differences. One possibility is that ADHD risk genes have sexually dimorphic effects.

View Article and Find Full Text PDF

A case-control association study for advanced age-related macular degeneration was conducted to explore several regions of interest identified by linkage. This analysis identified a single nucleotide polymorphism just 3' of complement factor I on chromosome 4 showing significant association (P<10(-7)). Sequencing was performed on coding exons in linkage disequilibrium with the detected association.

View Article and Find Full Text PDF

Prior work found the APOL1, 2 and 4 genes, located on chromosome 22q12.3-q13.1, to be upregulated in brains of schizophrenic patients.

View Article and Find Full Text PDF

Context: Although anxiety disorders are heritable, their genetic and phenotypic complexity has made the identification of susceptibility genes difficult. Well-validated animal models and intermediate phenotypes provide crucial tools for genetic dissection of anxiety. The gene encoding regulator of G protein signaling 2 (Rgs2) is a quantitative trait gene that influences mouse anxiety behavior, making its human ortholog (RGS2) a compelling candidate gene for human anxiety phenotypes.

View Article and Find Full Text PDF