Publications by authors named "Jeschke G"

The construction and performance of a cryogenic 35GHz pulse electron nuclear double resonance (ENDOR) probehead for large samples is presented. The resonator is based on a rectangular TE(102) cavity in which the radio frequency (rf) B(2)-field is generated by a two turn saddle ENDOR coil crossing the resonator along the sample axis with minimal distance to the sample tube. An rf power efficiency factor is used to define the B(2)-field strength per square-root of the transmitted rf power over the frequency range 2-180MHz.

View Article and Find Full Text PDF

ABC transporters are ubiquitous membrane proteins that translocate solutes across biological membranes at the expense of ATP. In prokaryotic ABC importers, the extracytoplasmic anchoring of the substrate-binding protein (receptor) is emerging as a key determinant for the structural rearrangements in the cytoplasmically exposed ATP-binding cassette domains and in the transmembrane gates during the nucleotide cycle. Here the molecular mechanism of such signaling events was addressed by electron paramagnetic resonance spectroscopy of spin-labeled ATP-binding cassette maltose transporter variants (MalFGK2-E).

View Article and Find Full Text PDF

A magnetic system is introduced which consists of three nested rings of permanent magnets of a Halbach dipolar layout and is capable for EPR spectroscopy. Two of the rings can be rotated independently to adjust the magnetic flux in the center and even allow for mechanical field sweeps. The presented prototype achieves a magnetic flux range of 0.

View Article and Find Full Text PDF

Membrane proteins reside in a structured environment in which some of their residues are accessible to water, some are in contact with alkyl chains of lipid molecules, and some are buried in the protein. Water accessibility of residues may change during folding or function-related structural dynamics. Several techniques based on the combination of pulsed electron paramagnetic resonance (EPR) with site-directed spin labeling can be used to quantify such water accessibility.

View Article and Find Full Text PDF

Adsorption-desorption induced structural changes of Cu(bpy)(H(2)O)(2)(BF(4)),(bpy) (bpy = 4,4'-bipyridine) [Cu-MOF] have been evidenced by combined NMR and EPR spectroscopy. Upon adsorption of probe molecules even at a few mbar, EPR spectra show that they are activated to form complexes at Cu(II) sites, which results in a change of the Cu-MOF's structure as indicated by a high-field shift of the (11)B MAS NMR. After desorption, both EPR and (11)B MAS NMR spectra evidenced that the structure of the Cu-MOF reversibly shifted to the original state.

View Article and Find Full Text PDF

The backbone structure is determined by site-directed spin labeling, double electron electron resonance measurements of distances, and modeling in terms of a helix-loop-helix construct for a transmembrane domain that is supposed to line the translocation pathway in the 54.3 kDa Na(+)/proline symporter PutP of Escherichia coli. The conformational distribution of the spin labels is accounted for by a rotamer library.

View Article and Find Full Text PDF

A structural model of the NhaA dimer showed that a beta-hairpin of each monomer combines to form a beta-sheet at the periplasmic side of the membrane. By Cys scanning the entire beta-hairpin and testing each Cys replacement for functionality and intermolecular cross-linking, we found that Gln47 and Arg49 are critical for the NhaA dimer and that K57C causes an acidic shift of 1 pH unit to the pH dependence of NhaA. Comparing the growth of the NhaA variants with the previously isolated beta-hairpin deleted mutant (Delta(P45-N58)) and the wild type validated that NhaA dimers have an advantage over monomers in growth under extreme stress conditions and unraveled that during this growth the apparent Km for Na+ of Delta(P45-N58) was increased 50-fold as compared with the wild type.

View Article and Find Full Text PDF

By combining electron paramagnetic resonance (EPR) measurements on a nitroxide probe and differential scanning calorimetry (DSC), we demonstrate existence of liquid supercooled water in a silica hydrogel with high hydration level down to temperatures of at least 198 K. Besides the major fraction of liquid supercooled water, a minor fraction crystallizes at about 236 K during cooling and melts at 246 K during heating. The liquid domains are of sufficient size to solvate the nearly spherical paramagnetic probe molecule TEMPO with a diameter of about 6 A.

View Article and Find Full Text PDF

Distal hydrogen bonding in natural dioxygen binding proteins is crucial for the discrimination between different potential ligands such as O(2) or CO. In the present study, we probe the chemical requirements for proper distal hydrogen bonding in a series of synthetic model compounds for dioxygen-binding heme proteins. The model compounds 1-Co to 7-Co bear different distal residues.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) spectroscopy was applied extensively in studies of nucleic acid structures and dynamics. Two modified 2'-deoxyuridine triphosphates were synthesized bearing a spin label linked to the base by a rigid linker to ensure a tight coupling of spin label dynamics. The incorporation of both spin-labeled nucleotides could be shown in primer extension reactions in presence of DNA polymerases from eukaryotic, prokaryotic, and archaic origin.

View Article and Find Full Text PDF

Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures.

View Article and Find Full Text PDF

We present a quantitative analysis of conformational changes of the nucleotide-binding subunits, MalK(2), of the maltose ATP-binding cassette importer MalFGK(2) during the transport cycle. Distance changes occurring between selected residues were monitored in the full transporter by site-directed spin-labeling electron paramagnetic resonance spectroscopy and site-directed chemical cross-linking. We considered S83C and A85C from the conserved Q-loop and V117C located on the outer surface of MalK.

View Article and Find Full Text PDF

Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in membrane fragments of heliobacterium Heliobacillus mobilis without further isolation by (13)C magic-angle spinning (MAS) solid-state NMR under continuous illumination with white light. In the (13)C photo-CIDNP MAS NMR spectra of heliobacterial membrane fragments, two sets of signals are observed, allowing characterization of the primary radical pair. One set, showing enhanced absorptive (positive) signals, arises from the BChl g donor, while the set of emissive (negative) signals is assigned to the 8(1)-hydroxy Chl a acceptor.

View Article and Find Full Text PDF

Inter-spin distances between 1 nm and 4.5 nm are measured by continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) methods for a series of nitroxide-spin-labelled peptides. The upper distance limit for measuring dipolar coupling by the broadening of the CW spectrum and the lower distance limit for the present optimally-adjusted double electron electron resonance (DEER) set-up are determined and found to be both around 1.

View Article and Find Full Text PDF

Double electron electron resonance (DEER), deuterium electron spin-echo envelope modulation (ESEEM) spectroscopy and 31P electron nuclear double resonance (ENDOR) spectroscopy were applied to site-specifically spin-labeled surfactants in the organically modified layered silicate magadiite and its composites with polystyrene (PS) and polycaprolactone (PCL). The organomagadiite consist of stacks of silicate platelets with surfactant layers between these platelets. In PS composites the stacks are dispersed in the polymer matrix as a whole, while melt processing with PCL leads to intercalation of polymer chains into the galleries between the platelets.

View Article and Find Full Text PDF

The lateral mobility of the thiolate ligands on the surface of Au nanoparticles was probed by EPR spectroscopy. This was achieved by using bisnitroxide ligands, which contained a disulfide group (to ensure attachment to the Au surface) and a cleavable ester bridge connecting the two spin-labeled branches of the molecule. Upon adsorption of these ligands on the surface of Au nanoparticles, the two spin-labeled branches were held next to each other by the ester bridge as evidenced by the spin-spin interactions.

View Article and Find Full Text PDF

In nanosecond-laser flash photo-CIDNP MAS NMR, polarization generation (PG) proceeds much faster than longitudinal spin relaxation. With a nanosecond-laser setup linked to the NMR console the repetition time of the experiment is then limited by the minimum recycle delay of the NMR spectrometer and the maximum repetition rate of laser flashes. These limits can only be reached if polarization left after the NMR experiment is completely canceled before the next laser flash.

View Article and Find Full Text PDF

Transient or partial formation of complexes between biomacromolecules is a general mechanism used to control cellular functions. Several of these complexes escape structure determination by crystallographic means. We developed a new approach for determining the structure of protein dimers in the native environment (e.

View Article and Find Full Text PDF

During the photocycle of quinone-blocked photosynthetic reaction centers (RCs), photochemically induced dynamic nuclear polarization (photo-CIDNP) is produced by polarization transfer from the initially totally electron polarized electron pair and can be observed by 13C magic-angle spinning (MAS) NMR as a strong modification of signal intensities. The same processes creating net nuclear polarization open up light-dependent channels for polarization loss. This leads to coherent and incoherent enhanced signal recovery, in addition to the recovery due to light-independent longitudinal relaxation.

View Article and Find Full Text PDF

In natural photosynthesis, the two photosystems that operate in series to drive electron transport from water to carbon dioxide are quite similar in structure and function, but operate at widely different potentials. In both systems photochemistry begins by photo-oxidation of a chlorophyll a, but that in photosystem II (PS2) has a 0.7 eV higher midpoint potential than that in photosystem I (PS1), so their electronic structures must be very different.

View Article and Find Full Text PDF

13C photo-CIDNP MAS NMR studies have been performed on reaction centers (RCs) of Rhodobacter sphaeroides wild type (WT) that have been selectively labeled with an isotope using [5-13C]-delta-aminolevulinic acid.HCl in all the BChl and BPhe cofactors at positions C-4, C-5, C-9, C-10, C-14, C-15, C-16, and C-20. 13C CP/MAS NMR and 13C-13C dipolar correlation photo-CIDNP MAS NMR provide a chemical shift map of the cofactors involved in the electron transfer process in the RC at the atomic scale.

View Article and Find Full Text PDF

The biological function of protein, DNA, and RNA molecules often depends on relative movements of domains with dimensions of a few nanometers. This length scale can be accessed by distance measurements between spin labels if pulsed electron paramagnetic resonance (EPR) techniques such as electron-electron double resonance (ELDOR) and double-quantum EPR are used. The approach does not require crystalline samples and is well suited to biomacromolecules with an intrinsic flexibility as distributions of distances can be measured.

View Article and Find Full Text PDF

Photochemically induced dynamic nuclear polarization has been observed in reaction centres of the green sulphur bacterium Chlorobium tepidum by (13)C magic-angle spinning solid-state NMR under continuous illumination with white light. An almost complete set of chemical shifts of the aromatic ring carbons of a BChl a molecule has been obtained. All light-induced (13)C NMR signals appear to be emissive, which is similar to the pattern observed in the reaction centers of plant photosystem I and purple bacterial reaction centres of Rhodobacter sphaeroides wild type.

View Article and Find Full Text PDF