In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.
View Article and Find Full Text PDFCorrection for 'Diffusion equation for the longitudinal spectral diffusion: the case of the RIDME experiment' by Sergei Kuzin , , 2022, , 23517-23531, https://doi.org/10.1039/D2CP03039J.
View Article and Find Full Text PDFCopper-exchanged zeolite omega (Cu-omega) is a potent material for the selective conversion of methane-to-methanol (MtM) via the oxygen looping approach. However, its performance exhibits substantial variation depending on the operational conditions. Under an isothermal temperature regime, Cu-omega demonstrates subdued activity below 230 °C, but experiences a remarkable increase in activity at 290 °C.
View Article and Find Full Text PDFThe CH oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CHOH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu and [CuOH] present at low Si/Al ratio and Cu loading.
View Article and Find Full Text PDFThe intermolecular hyperfine relaxation-induced dipolar modulation enhancement (ih-RIDME) experiment has a promising potential to quantitatively characterize the nuclear environment in the 0.8-3 nm range around an electron spin. Such information about the spatial arrangement of nuclei is of great interest for structural biology as well as for dynamic nuclear polarization (DNP) methods.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2024
Dynamic nuclear polarization (DNP) experiments using microwave (mw) pulse sequences are one approach to transfer the larger polarization on the electron spin to nuclear spins of interest. How the result of such experiments depends on the external magnetic field and the excitation power is part of an ongoing debate and of paramount importance for applications that require high chemical-shift resolution. To date numerical simulations using operator-based Floquet theory have been used to predict and explain experimental data.
View Article and Find Full Text PDFElectron paramagnetic resonance (EPR) spectroscopy is a powerful tool for in situ/operando tracking of catalytic reactions that involve paramagnetic species either as a catalyst (e.g. transition metal ions or defects), reaction intermediates (radicals) or poisoning agents such as coke.
View Article and Find Full Text PDFA new method to quantitatively analyze heterogeneous distributions of local proton densities around paramagnetic centers in unstructured and weakly structured biomacromolecules and soft matter is introduced, and its feasibility is demonstrated on aqueous solutions of stochastically spin-labeled polysaccharides. This method is based on the pulse EPR experiment ih-RIDME (intermolecular hyperfine relaxation-induced dipolar modulation enhancement). Global analysis of a series of RIDME traces allows for a mathematically stable transformation of the time-domain data to the distribution of local proton concentrations.
View Article and Find Full Text PDFTunneling of methyl rotors coupled to an electron spin causes magnetic field independent electron spin echo envelope modulation (ESEEM) at low temperatures. For nitroxides containing alkyl substituents, we observe this effect as a contribution at the beginning of the Hahn echo decay signal occurring on a faster time scale than the matrix-induced decoherence. The tunneling ESEEM contribution includes information on the local environment of the methyl rotors, which manifests as a distribution of rotation barriers () when measuring the paramagnetic species in a glassy matrix.
View Article and Find Full Text PDFMetal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrO, for CO hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrO catalysts with small amounts (0.
View Article and Find Full Text PDFHybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn impurities in MAPbCl to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation.
View Article and Find Full Text PDFCharacterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe)], a prototypical example, which contains notable structural features according to X-ray crystallography.
View Article and Find Full Text PDFProteins, especially of eukaryotes, often have disordered domains and may contain multiple folded domains whose relative spatial arrangement is distributed. The MMMx ensemble modeling and analysis toolbox (https://github.com/gjeschke/MMMx) can support the design of experiments to characterize the distributed structure of such proteins, starting from AlphaFold2 predictions or folded domain structures.
View Article and Find Full Text PDFSolutions of some proteins phase separate into a condensed state of high protein concentration and a dispersed state of low concentration. Such behavior is observed in living cells for a number of RNA-binding proteins that feature intrinsically disordered domains. It is relevant for cell function via the formation of membraneless organelles and transcriptional condensates.
View Article and Find Full Text PDFTo characterize structure and molecular order in the nanometre range, distances between electron spins and their distributions can be measured via dipolar spin-spin interactions by different pulsed electron paramagnetic resonance experiments. Here, for the single-frequency technique for refocusing dipolar couplings (SIFTER), the buildup of dipolar modulation signal and intermolecular contributions is analysed for a uniform random distribution of monoradicals and biradicals in frozen glassy solvent by using the product operator formalism for electron spin . A dipolar oscillation artefact appearing at both ends of the SIFTER time trace is predicted, which originates from the weak coherence transfer between biradicals.
View Article and Find Full Text PDFThe development of selective catalysts for direct conversion of ammonia into nitrous oxide, NO, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective NO production over 100 h on stream up to 79% NO selectivity at full NH conversion.
View Article and Find Full Text PDFThe ethylene polymerization Phillips catalyst has been employed for decades and is central to the polymer industry. While Cr(III) alkyl species are proposed to be the propagating sites, there is so far no direct experimental evidence for such proposal. In this work, by coupling Surface organometallic chemistry, EPR spectroscopy, and machine learning-supported XAS studies, we have studied the electronic structure of well-defined silica-supported Cr(III) alkyls and identified the presence of several surface species in high and low-spin states, associated with different coordination environments.
View Article and Find Full Text PDFChemotherapy remains a primary treatment for younger AML patients, though many relapse. Data from our group have shown that highly phosphorylated S6 in blasts may predict response to sirolimus given with chemotherapy. We report the results of a phase I study of this combination in newly diagnosed AML and the pharmacodynamic analysis of pS6 before and after treatment.
View Article and Find Full Text PDFFollowing the success of cryogenic EPR signal preamplification at X-band, we present a Q-band EPR cryoprobe compatible with a standard EPR resonator. The probehead is equipped with a cryogenic ultra low-noise microwave amplifier and its protection circuit that are placed close to the sample in the same cryostat. Our cryoprobe maintains the same sample access and tuning which is typical in Q-band EPR, as well as supports high-power pulsed experiments on typical samples.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) are crucial regulators of gene expression, often composed of defined domains interspersed with flexible, intrinsically disordered regions. Determining the structure of ribonucleoprotein (RNP) complexes involving such RBPs necessitates integrative structural modeling due to their lack of a single stable state. In this study, we integrate magnetic resonance, mass spectrometry, and small-angle scattering data to determine the solution structure of the polypyrimidine-tract binding protein 1 (PTBP1/hnRNP I) bound to an RNA fragment from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV).
View Article and Find Full Text PDFPhosphine-stabilized monovalent nickel complexes play an important role in catalysis, either as catalytically active species or as decomposition products. Most routes to access these complexes are highly ligand specific or rely on strong reducing agents. Our group recently disclosed a path to access nickel(I)-phenolate complexes from bis(1,5-cyclooctadiene)nickel(0) (Ni(cod)).
View Article and Find Full Text PDFCarbon supports are ubiquitous components of heterogeneous catalysts for acetylene hydrochlorination to vinyl chloride, from commercial mercury-based systems to more sustainable metal single-atom alternatives. Their potential co-catalytic role has long been postulated but never unequivocally demonstrated. Herein, we evidence the bifunctionality of carbons and metal sites in the acetylene hydrochlorination catalytic cycle.
View Article and Find Full Text PDFPropane dehydrogenation is an important industrial reaction to access propene, the world's second most used polymer precursor. Catalysts for this transformation are required to be long living at high temperature and robust toward harsh oxidative regeneration conditions. In this work, combining surface organometallic chemistry and thermolytic molecular precursor approach, we prepared well-defined silica-supported Pt and alloyed PtZn materials to investigate the effect of Ti-doping on catalytic performances.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2023
Cu-exchanged mordenite (MOR) is a promising material for partial CH oxidation. The structural diversity of Cu species within MOR makes it difficult to identify the active Cu sites and to determine their redox and kinetic properties. In this study, the Cu speciation in Cu-MOR materials with different Cu loadings has been determined using operando electron paramagnetic resonance (EPR) and operando ultraviolet-visible (UV/Vis) spectroscopy as well as in situ photoluminescence (PL) and Fourier-transform infrared (FTIR) spectroscopy.
View Article and Find Full Text PDFWe report on the synthesis and spectroscopic evidence for a sequence of structural transformations of a new defect-cubane type copper complex, [Cu(pyalk)(OAc)](ClO)(HNEt), which acts as a pre-catalyst for water oxidation. and post-catalytic studies showed that the tetrameric complex undergoes a structural transformation into dimeric and monomeric species, induced by water molecules and carbonate anions, respectively. Further, the observed electrocatalytic water oxidation activity has been confirmed to arise from -generated Cu(II) oxidic nanostructures at the electrode interface.
View Article and Find Full Text PDF