Publications by authors named "Jes K Klarlund"

Biologics are almost exclusively administered systemically, but localized delivery is preferable as it minimizes off-target exposure and allows more aggressive treatments. Topical application of biologics to epithelia is generally ineffective because most are covered with fluids and biologics are washed out too quickly to have significant therapeutic effects. Here we explore the idea that attaching a binding domain can serve as an "anchor" to extend the residency time of biologics on wet epithelia, allowing their effective use even with infrequent applications.

View Article and Find Full Text PDF

The combined activity of the tear film and blinking is remarkably efficient at removal of foreign materials from the ocular surface. This has prevented the use of certain classes of drugs for the treatment of ocular surface problems. We propose that the use of peptide and protein domains that bind to moieties on the cornea could be used to deliver therapeutics by anchoring the drugs on the ocular surface long enough to provide therapeutic effects.

View Article and Find Full Text PDF

The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration.

View Article and Find Full Text PDF

Purse-string healing is driven by contraction of actin/myosin cables that span cells at wound edges, and it is the predominant mode of closing small round wounds in embryonic and some adult epithelia. Wounds can also heal by cell crawling, and my colleagues and I have shown previously that the presence of unconstrained, straight edges in sheets of epithelial cells is a sufficient signal to induce healing by crawling. Here, it is reported that the presence of highly concave edges, which are free or physically constrained by an inert material (agarose), is sufficient to induce formation of purse strings.

View Article and Find Full Text PDF

Wounding usually causes considerable cell damage, and released ATP promotes migration of nearby epithelium. ATP binds to purinergic receptors on the cell surface and induces transactivation of the EGF receptor through signaling by the Src family kinases (SFKs). Here we tested whether ATP activates these kinases through Pyk2, a member of the focal adhesion kinase family.

View Article and Find Full Text PDF

Background: Heparin-binding EGF-like growth factor (HB-EGF) contains, in contrast to EGF, a domain that binds to negatively charged glycans on cell surfaces and in extracellular matrix. We speculated that a short exposure to HB-EGF induces prolonged biological effects such as healing of wounds after immobilization in tissues.

Methods: Epithelial cell sheets in tissue and corneas in organ culture were treated briefly with HB-EGF or EGF and binding of the growth factors, time course of activation of the EGF receptor, and healing of wounds were compared.

View Article and Find Full Text PDF

One of the primary functions of any epithelium is to act as a barrier. To maintain integrity, epithelia migrate rapidly to cover wounds, and there is intense interest in understanding how wounds are detected. Numerous soluble factors are present in the wound environment and epithelia can sense the presence of adjacent denuded extracellular matrix.

View Article and Find Full Text PDF
Article Synopsis
  • - The migration of epithelial cells is crucial for wound healing, impacted by various factors like mechanical disruption and interactions with the extracellular matrix.
  • - Continuous activation of the epidermal growth factor receptor (EGFR) is essential for the healing process in corneal epithelial cell sheets.
  • - A study indicates that wound edges serve as a significant cue for activating the EGFR and enhancing cell motility, independent of other factors, suggesting that the removal of physical constraints rather than specific cell interactions triggers this response.
View Article and Find Full Text PDF

Activation of the epidermal growth factor receptor (EGFR) is a key signaling event that promotes cells to move and cover wounds in many epithelia. We have previously shown that wounding activates the EGFR through activation of the Src family kinases (SFKs), which induce proteolytic shedding of epidermal growth factor-like ligands from the cell surface. A major goal in wound healing research is to identify early signals that promote motility, and here we examined the hypothesis that members of the focal adhesion kinase family are upstream activators of the SFKs after wounding.

View Article and Find Full Text PDF

Wounding epithelia induces activation of the epidermal growth factor receptor (EGFR), which is absolutely required for induction of motility. ATP is released from cells after wounding; it binds to purinergic receptors on the cell surface, and the EGFR is subsequently activated. Exogenous ATP activates phospholipase D, and we show here that ATP activates the EGFR through the phospholipase D2 isoform.

View Article and Find Full Text PDF

Most formulations of artificial tears include high-molecular weight hydrophilic polymers (hydrogels) that are usually thought to serve to enhance viscosity and to act as demulcents. A few reports have indicated that application of some of the polymers accelerates healing of wounds in epithelia. Since activation of the epidermal growth factor (EGF) receptor is critical for spontaneous corneal epithelial wound healing, we tested commonly used hydrogels for their ability to activate the EGF receptor and enhance closure of wounds.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells.

View Article and Find Full Text PDF

Phospholipase D catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid, and there is currently much interest in elucidating messenger functions for this molecule. We report here that wounding sheets of corneal epithelial and Madin Darby canine kidney cells induces strong activation of phospholipase D, and we provide evidence that activation is amplified through a positive feed-back loop. Short-chain analogues of phosphatidic acid induce motility robustly in corneal and other epithelial cell types.

View Article and Find Full Text PDF

Cellular responses to wounding have often been studied at a molecular level after disrupting cell layers by mechanical means. This invariably results in damage to cells at the edges of the wounds, which has been suggested to be instrumental for initiating wound healing. To test this, we devised an alternative procedure to introduce gaps in layers of corneal epithelial cells by casting agarose strips on tissue culture plates.

View Article and Find Full Text PDF