Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR.
View Article and Find Full Text PDFSaccharomyces cerevisiae Pif1 is a multi-functional DNA helicase that plays diverse roles in the maintenance of the nuclear and mitochondrial genomes. Two isoforms of Pif1 are generated from a single open reading frame by the use of alternative translational start sites. The Mitochondrial Targeting Signal (MTS) of Pif1 is located between the two start sites, but a Nuclear Localization Signal (NLS) has not been identified.
View Article and Find Full Text PDFGermline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences.
View Article and Find Full Text PDFBreak-induced replication (BIR) proceeds via a migrating D-loop for hundreds of kilobases and is highly mutagenic. Previous studies identified long single-stranded (ss) nascent DNA that accumulates during leading strand synthesis to be a target for DNA damage and a primary source of BIR-induced mutagenesis. Here, we describe a new important source of mutagenic ssDNA formed during BIR: the ssDNA template for leading strand BIR synthesis formed during D-loop migration.
View Article and Find Full Text PDFBreak-induced replication (BIR) repairs one-ended double-strand breaks in DNA similar to those formed by replication collapse or telomere erosion, and it has been implicated in the initiation of genome instability in cancer and other human diseases. Previous studies have defined the enzymes that are required for BIR; however, understanding of initial and extended BIR synthesis, and of how the migrating D-loop proceeds through known replication roadblocks, has been precluded by technical limitations. Here we use a newly developed assay to show that BIR synthesis initiates soon after strand invasion and proceeds more slowly than S-phase replication.
View Article and Find Full Text PDF