Background: The NiTi alloy, known for its shape memory and superelasticity, is increasingly used in medicine. However, its high nickel content requires enhanced biocompatibility for long-term implants. Low-temperature plasma treatments under glow-discharge conditions can improve surface properties without compromising mechanical integrity.
View Article and Find Full Text PDFIn this paper, glow nitriding processes at cathode potential are used at various temperatures to investigate how they affect the corrosion resistance of 316L steel in ethanol at temperatures of 22 °C and -30 °C. Lowering the test temperature reduces the corrosion rate of the nitrided layers. Conversely, glow nitriding at 450 °C improves the corrosion resistance of the tested steel.
View Article and Find Full Text PDFThe present study elucidates the impact of glow discharge oxidation within a low-temperature plasma environment on the bioactivity characteristics of an NiTi shape memory alloy. The properties of the produced surface layers, such as structure (TEM observations), surface morphology (SEM observations), chemical and phase composition (EDS and XRD measurements), wettability (optical gonimeter), and the biological response of osteoblasts and platelets to the oxidized surface compared with the NiTi alloy without a surface layer are presented. The presented surface modification of the NiTi shape memory alloy, achieved through oxidizing in a low-temperature plasma environment, led to the creation of a continuous surface layer composed of nanocrystalline titanium oxide TiO (rutile).
View Article and Find Full Text PDFIn this paper, we analyze the possibilities of the protection of tools for wood machining with PVD (Physical Vapor Deposition) hard coatings. The nanolayered TiN/AlTiN coating, nanocomposite TiAlSiN coatings, and single layer TiN coating were analyzed in order to use them for protection of tools for wood machining. Both nanostructured coatings were deposited in an industrial magnetron sputtering system on the cutting blades made of sintered carbide WC-Co, while TiN single layer coating was deposited by evaporation using thermionic arc.
View Article and Find Full Text PDFThe influence of different types of cemented carbide blades and thickness of TiAlN/a-C:N and TiN/AlTiN protective coatings used in the wood industry on cutting performance has been studied. Three types of WC-Co cemented carbide blades with different cobalt content were used in the study. The thicknesses of both types of coatings were ~2 and ~5 µm.
View Article and Find Full Text PDFBackground: The GO-MORE study was an open-label, multinational, prospective study that investigated the efficacy and safety of adding golimumab to synthetic disease-modifying antirheumatic drugs (sDMARDs) in patients with active rheumatoid arthritis (RA).
Objectives: The aim of this study was to assess the efficacy and safety of golimumab add-on therapy in the Polish subpopulation of the GO-MORE study.
Material And Methods: Patients were administered 50 mg subcutaneous doses of golimumab once a month for 6 months, while continuing therapy with sDMARDs and/or glucocorticoids (GCS).