Designing a particular change in a system structure to achieve the desired elastic properties of materials for a given task is challenging. Recent studies of purely geometrical atomic models have shown that structural modifications on a molecular level can lead to interesting and desirable elastic properties. Still, the result of such changes is usually difficult to predict.
View Article and Find Full Text PDFTailoring the materials for a given task by modifying their elastic properties is attractive to material scientists. However, recent studies of purely geometrical atomic models with structural modifications showed that designing a particular change to achieve the desired elastic properties is complex. This work concerns the impact of nanochannel inclusions in fcc hard sphere crystal on its elastic properties, especially auxetic ones.
View Article and Find Full Text PDFTests were carried out to develop and manufacture various types of auxetic dowels using 3D printing technology. These dowels were then used to connect L-type corner joint specimens for case furniture, and their strength and stiffness were analyzed through experimental, theoretical, and numerical means. In the scope of the study, eight different types of auxetic dowels including two inclusion types, two inclusion sizes, and two dowel hole diameters, as well as a reference non-auxetic dowel, were designed.
View Article and Find Full Text PDFIn this study, the aim was to optimize the cross-sectional geometry of auxetic dowels for furniture joints. For this purpose, two different sizes of auxetic dowels were chosen, one for frame- and the other for panel-type furniture joints for designing the cross-sectional geometry. Auxetic patterns that are created on the cross-sectional area cause deficiency of the materials, and this phenomenon decreases the modulus of elasticity (MOE) and increases the member stress.
View Article and Find Full Text PDFThe main objective of the study was to determine the effect of impregnation of the paper core with acetylated starch on the mechanical properties and absorbed energy in the three-point bending test of wood-based honeycomb panels under varying temperatures and relative air humidity conditions. Nearly six hundred beams in various combinations, three types of facings, three core cells geometries, and two paper thicknesses were tested. The experiment results and their statistical analysis prove a significant relationship between the impregnation of paper with modified starch and mechanical properties.
View Article and Find Full Text PDFThis study aimed to numerically and experimentally analyze the effects of internal mounting forces and selected materials on the stiffness and bending moment capacity of L-type corner joints connected with novelty-designed 3D printed fasteners. The experiments were carried out using medium-density fiberboard, high-density fiberboard, beech plywood, particleboard, and beech ( L.) wood.
View Article and Find Full Text PDFStudies on the application of the auxetic metamaterials and structures in furniture joints are very limited. However, they have huge potential for use in ready-to-assemble furniture. This study aimed to design and produce different types of auxetic dowels in 3D printing technology, and experimentally and numerically analyze the withdrawal strength of these dowels.
View Article and Find Full Text PDFThe development of both light and strong wood-derived materials is an interesting research area, particularly in terms of usability in, e.g., furniture constructions.
View Article and Find Full Text PDFThe work concerns a three-point bending test of beams made of plywood, high density fibre boards, cardboard, and wood-epoxy mass. The goal of the investigation was to determine the effect of thickness and type of wood-based facings on stiffness, strength, ability to absorb, and dissipate the energy of sandwich beams with an auxetic core. The cognitive goal of the work was to demonstrate the possibility of using recycled materials for facings and cores instead of popular wood composites.
View Article and Find Full Text PDFThe research hypothesis states that the impregnation of the honeycomb paper core of lightweight sandwich panels with modified starch, sodium silicate and epoxy resin (LiquidWood) resin has a significant effect on its elastic properties. In this study, a recycled paper was used in three thicknesses, seven types of cell shapes, including two after numerical optimization and three types of impregnating agents. The method of digital image analysis determined the elastic constants of manufactured paper cores, which were subjected to axial compression in two directions.
View Article and Find Full Text PDF