Publications by authors named "Jerzy Sepiol"

Parent hemiporphycene, a recently obtained constitutional isomer of porphyrin, exists in room temperature solutions and polymer matrices in the form of two trans tautomers interconverting via double hydrogen transfer. Using confocal fluorescence microscopy, it was possible to monitor tautomerization in single hemiporphycene molecules embedded in a PMMA film by monitoring the spectral and temporal evolution of their fluorescence spectra. The emission spectra of the two tautomeric forms are similar to those obtained from ensemble studies.

View Article and Find Full Text PDF

Hemiporphycene (HPc), a constitutional isomer of porphyrin, is studied under supersonic expansion conditions by means of laser-induced fluorescence, visible-visible hole-burning experiments, single vibronic level fluorescence techniques, and quantum chemical calculations. Only one form of jet-cooled HPc is observed, in contrast to solution studies that evidence a mixture of two tautomeric forms separated in energy by ∼1 kcal/mol. Reliable structural assignment is provided by simulating absorption and emission patterns at the density functional theory and time-dependent density functional theory levels of theory.

View Article and Find Full Text PDF

We report on laser-induced fluorescence excitation and dispersed fluorescence spectra of two isomeric compounds: 1,4- and 1,8-diazatriphenylene (1,4- and 1,8-DAT) isolated in supersonic molecular jets, and their 1:1 complexes with protic solvents. We found that the ground and excited state vibronic patterns of bare 1,4-DAT differ significantly from those of 1,8-DAT, and those of the complexes of both isomers. A marked activity of several out-of-plane vibrations in 1,4-DAT and the symptoms of the distortion of the S excited molecule were diagnosed from the vibronic spectra, whereas planar structures were predicted for 1,8-DAT in S and S states.

View Article and Find Full Text PDF

The excited state intramolecular proton transfer (ESIPT) reaction of the dually fluorescent 2,5-diethyl-(dibenzoxazolyl)-hydroquinone (DE-BBHQ) was studied with several time resolved techniques. The complementary character of up-conversion and time correlated single photon counting methods was demonstrated. According to the up-conversion experiments, the primary excited dienol form transforms into the monoketo tautomer in a very efficient ultrafast (∼100 fs) proton transfer reaction.

View Article and Find Full Text PDF

We report spectroscopic and photophysical studies of a series of selected indole derivatives in solutions and under supersonic jet isolation conditions. All the compounds can assume two rotameric forms, syn and anti. The bifunctional molecules containing both the hydrogen bond donor (indole NH group) and acceptor centers (oxygen, nitrogen, or sulfur atoms) located in separate moieties covalently linked by a single bond are compared with the compound that does not have any acceptor center, 2-(1H-pyrrol-2'-yl)-1H-indole.

View Article and Find Full Text PDF

Supersonic jet-isolated porphycene has been studied using the techniques of laser-induced fluorescence excitation, single vibronic level fluorescence, and spectral hole burning, combined with quantum mechanical calculations of geometry and vibrational structure of the ground and lowest electronically excited singlet states. Porphycene is a model for coherent double hydrogen tunneling in a symmetrical double well potential, as evidenced by tunneling splittings observed in electronic absorption and emission. The results led to reliable assignment of low frequency modes in S0 and S1 electronic states.

View Article and Find Full Text PDF

Structural factors affecting the dynamics of the excited state intramolecular proton transfer (ESIPT) are studied for alkyl derivatives of 2,5-bis(2-benzoxazolyl)phenol. Two fluorescence bands with equal decay times are observed in solution, while only one--emitted by the phototautomer--in supersonic jet. All evidence indicates the existence of a potential barrier in the S(1) state.

View Article and Find Full Text PDF

Laser-induced fluorescence and dispersed fluorescence spectra measured in supersonic jets for 9,10,19,20-tetra-n-methylporphycene and 9,10,19,20-tetra-n-propylporphycene reveal, for both compounds, the presence of two different species which are assigned to trans and cis tautomeric forms. Doublet splitting of lines is observed, disappearing upon deuteration of the inner nitrogen atoms. This finding is interpreted as an indication of double hydrogen tunneling.

View Article and Find Full Text PDF

Fluorescence imaging is used to visualize directly the transfer of two inner hydrogen atoms in single porphycene molecules. This reaction leads to a chemically equivalent but differently oriented structure and hence results in a rotation of the transition dipole moments. By probing single immobilized molecules with an azimuthally polarized laser beam in the focal spot of a confocal microscope we observe ring-like emission patterns, possible only for a chromophore with two nearly orthogonal transition dipole moments.

View Article and Find Full Text PDF