Publications by authors named "Jerzy Paszkowski"

The tissue culture passage necessary for the generation of transgenic plants induces genome instability. This instability predominantly involves the uncontrolled mobilization of LTR retrotransposons (LTR-TEs), which are the most abundant class of mobile genetic elements in plant genomes. Here, we demonstrate that in conditions inductive for high LTR-TE mobilization, like abiotic stress in Arabidopsis (Arabidopsis thaliana) and callus culture in rice (Oryza sativa), application of the reverse transcriptase (RT) inhibitor known as Tenofovir substantially affects LTR-TE RT activity without interfering with plant development.

View Article and Find Full Text PDF

Transposable elements in crop plants are the powerful drivers of phenotypic variation that has been selected during domestication and breeding programs. In tomato, transpositions of the LTR (long terminal repeat) retrotransposon family Rider have contributed to various phenotypes of agronomical interest, such as fruit shape and colour. However, the mechanisms regulating Rider activity are largely unknown.

View Article and Find Full Text PDF

The propensity of viruses to acquire genetic material from relatives and possibly from infected hosts makes them excellent candidates as vectors for horizontal gene transfer. However, virus-mediated acquisition of host genetic material, as deduced from historical events, appears to be rare. Here, we report spontaneous and surprisingly efficient generation of hybrid virus/host DNA molecules in the form of minicircles during infection of Beta vulgaris by Beet curly top Iran virus (BCTIV), a single-stranded DNA virus.

View Article and Find Full Text PDF
Article Synopsis
  • Retrotransposons significantly influence the evolution of host genomes, with historical DNA sequence studies illustrating their past activities but lacking insights into current transposition capabilities.
  • A new method called ALE-seq has been developed to better identify active retrotransposons in large and complex genomes like those of crops, allowing for the detection of extrachromosomal linear DNA (eclDNA).
  • Using ALE-seq, researchers found a heat-stress-activated Copia family retrotransposon in rice and identified a developmentally regulated Gypsy family retrotransposon in tomatoes, while also creating a bioinformatics pipeline for analyzing retroelement activity without relying on high-quality genomic references.
View Article and Find Full Text PDF

Pack-TYPE transposons are a unique class of potentially mobile non-autonomous elements that can capture, merge and relocate fragments of chromosomal DNA. It has been postulated that their activity accelerates the evolution of host genes. However, this important presumption is based only on the sequences of currently inactive Pack-TYPE transposons and the acquisition of chromosomal DNA has not been recorded in real time.

View Article and Find Full Text PDF

Retrotransposons containing long terminal repeats (LTRs) form a substantial fraction of eukaryotic genomes. The timing of past transposition can be estimated by quantifying the accumulation of mutations in initially identical LTRs. This way, retrotransposons are divided into young, potentially mobile elements, and old that moved thousands or even millions of years ago.

View Article and Find Full Text PDF

It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally.

View Article and Find Full Text PDF

Retrotransposons (RTs) can rapidly increase in copy number due to periodic bursts of transposition. Such bursts are mutagenic and thus potentially deleterious. However, certain transposition-induced gain-of-function or regulatory mutations may be of selective advantage.

View Article and Find Full Text PDF

Motivation: Retrieval and reproducible functional annotation of genomic data are crucial in biology. However, the current poor usability and transparency of retrieval methods hinders reproducibility. Here we present an open source R package, biomartr , which provides a comprehensive easy-to-use framework for automating data retrieval and functional annotation for meta-genomic approaches.

View Article and Find Full Text PDF

Transgenerationally heritable epialleles are defined by the stable propagation of alternative transcriptional states through mitotic and meiotic cell cycles. Given that the propagation of DNA methylation at CpG sites, mediated in by MET1, plays a central role in epigenetic inheritance, we examined genomewide DNA methylation in partial and complete loss-of-function mutants. We interpreted the data in relation to transgenerational epiallelic stability, which allowed us to classify chromosomal targets of epigenetic regulation into (i) single copy and methylated exclusively at CpGs, readily forming epialleles, and (ii) transposon-derived, methylated at all cytosines, which may or may not form epialleles.

View Article and Find Full Text PDF

Methylation of cytosine is an epigenetic mark involved in the regulation of transcription, usually associated with transcriptional repression. In mammals, methylated cytosines are found predominantly in CpGs but in plants non-CpG methylation (in the CpHpG or CpHpH contexts, where H is A, C or T) is also present and is associated with the transcriptional silencing of transposable elements. In addition, CpG methylation is found in coding regions of active genes.

View Article and Find Full Text PDF

Plant genomes consist to a large extent of transposable elements (TEs), predominantly retrotransposons. Their accumulation through periodic transposition bursts has shaped the structure and regulatory organization of plant genomes, often contributing to phenotypic traits. Transposon-generated phenotypes selected by humans during plant domestication have been maintained under strict selection during subsequent plant breeding.

View Article and Find Full Text PDF

We have addressed the possible epigenetic contribution to heterosis using epigenetic inbred lines (epiRILs) with varying levels and distributions of DNA methylation. One line consistently displayed parent-of-origin heterosis for growth-related traits. Genome-wide transcription profiling followed by a candidate gene approach revealed 33 genes with altered regulation in crosses of this line that could contribute to the observed heterosis.

View Article and Find Full Text PDF

Epigenetic mechanisms suppress the transcription of transposons and DNA repeats; however, this suppression can be transiently released under prolonged heat stress. Here we show that the Arabidopsis thaliana imprinted gene SDC, which is silent during vegetative growth due to DNA methylation, is activated by heat and contributes to recovery from stress. SDC activation seems to involve epigenetic mechanisms but not canonical heat-shock perception and signaling.

View Article and Find Full Text PDF

Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable 'cellular memory'.

View Article and Find Full Text PDF

Examples of transgenerational transmission of environmentally induced epigenetic traits remain rare and disputed. Abiotic stress can release the transcription of epigenetically suppressed transposons and, noticeably, this activation is only transient. Therefore, it is likely that mechanisms countering the mitotic and meiotic inheritance of stress-triggered chromatin changes must exist but are undefined.

View Article and Find Full Text PDF

Retrotransposons are ubiquitous mobile genetic elements constituting a major part of eukaryotic genomes. Yet, monitoring retrotransposition and subsequent copy number increases in multicellular eukaryotes is intrinsically difficult. By following the transgenerational accumulation of a newly activated retrotransposon EVADE (EVD) in Arabidopsis, we noticed fast expansion of activated elements transmitted through the paternal germ line but suppression when EVD-active copies are maternally inherited.

View Article and Find Full Text PDF

During sexual reproduction, one-half of the genetic material is deposited in gametes, and a complete set of chromosomes is restored upon fertilization. Reduction of the genetic information before gametogenesis occurs in meiosis, when cross-overs (COs) between homologous chromosomes secure an exchange of their genetic information. COs are not evenly distributed along chromosomes and are suppressed in chromosomal regions encompassing compact, hypermethylated centromeric and pericentromeric DNA.

View Article and Find Full Text PDF

Shifts between epigenetic states of transcriptional activity are typically correlated with changes in epigenetic marks. However, exceptions to this rule suggest the existence of additional, as yet uncharacterized, layers of epigenetic regulation. MOM1, a protein of 2,001 amino acids that acts as a transcriptional silencer, represents such an exception.

View Article and Find Full Text PDF

Chromatin reconstitution after DNA replication and repair is essential for the inheritance of epigenetic information, but mechanisms underlying such a process are still poorly understood. Previously, we proposed that Arabidopsis BRU1 functions to ensure the chromatin reconstitution. Loss-of-function mutants of BRU1 are hypersensitive to genotoxic stresses and cause release of transcriptional gene silencing of heterochromatic genes.

View Article and Find Full Text PDF

Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.

View Article and Find Full Text PDF

Eukaryotic genomes consist to a significant extent of retrotransposons that are suppressed by host epigenetic mechanisms, preventing their uncontrolled propagation. However, it is not clear how this is achieved. Here we show that in Arabidopsis seedlings subjected to heat stress, a copia-type retrotransposon named ONSEN (Japanese 'hot spring') not only became transcriptionally active but also synthesized extrachromosomal DNA copies.

View Article and Find Full Text PDF