Ambient fine particulate matter (PM) data were collected in the lower City of Hamilton, Ontario to apportion the sources of this pollutant over an 18-month period. Hamilton has complex topographical features that may result in worsened air pollution within the lower city, thus, dispersion-normalized, multi-time resolution factor analysis (DN-MT-FA) was used to identify and quantify contributions of factors in a manner that reduced the influence of local meteorology. These factors were secondary organic aerosols type 1 (SOA_1), particulate nitrate (pNO3), particulate sulphate (pSO4), primary traffic organic matter (PTOM), Steel/metal processing and vehicular road dust emissions (Steel & Mobile) and, secondary organic aerosols type 2 (SOA_2) with origins ranging from mainly regional to mainly local.
View Article and Find Full Text PDFSci Total Environ
November 2022
Traffic-related air pollutants (TRAP) including nitric oxide (NO), nitrogen oxide (NO), carbon monoxide (CO), ultrafine particles (UFP), black carbon (BC), and fine particulate matter (PM) were simultaneously measured at near-road sites located at 10 m (NR10) and 150 m (NR150) from the same side of a busy highway to provide insights into the influence of winter time meteorology on exposure to TRAP near major roads. The spatial variabilities of TRAP were examined for ambient temperatures ranging from -11 °C to +19 °C under downwind, upwind, and stagnant air conditions. The downwind TRAP concentrations at NR10 were higher than the upwind concentrations by a factor of 1.
View Article and Find Full Text PDFRoad traffic emissions are an increasingly important source of particulate matter in urban and non-road environments, where non-tailpipe emissions can contribute substantially to elevated levels of metals associated with adverse health effects. Thus, better characterization and quantification of traffic-emitted metals is warranted. In this study, real-world emission factors for fine particulate metals were determined from hourly x-ray fluorescence measurements over a three-year period (2015-2018) at an urban roadway and busy highway.
View Article and Find Full Text PDFA daily integrated emission factor (EF) method was applied to data from three near-road monitoring sites to identify variables that impact traffic related pollutant concentrations in the near-road environment. The sites were operated for 20 months in 2015-2017, with each site differing in terms of design, local meteorology, and fleet compositions. Measurement distance from the roadway and local meteorology were found to affect pollutant concentrations irrespective of background subtraction.
View Article and Find Full Text PDF