Publications by authors named "Jerson Cadenas"

Aims: To examine a relationship between alterations of structure and function of the arterial wall in response to glucose-lowering therapy in type 2 diabetes mellitus (DM) after a 1-year follow-up (FU).

Methods And Results: In DM (n = 22) and in healthy controls (n = 17), coronary artery calcification (CAC) was assessed with electron beam tomography and carotid intima-media thickness (IMT) with ultrasound, whereas coronary function was determined with positron emission tomography-measured myocardial blood flow (MBF) at rest, during cold pressor testing (CPT), and during adenosine stimulation at baseline and after FU. The decrease in plasma glucose in DM after a mean FU of 14 +/- 1.

View Article and Find Full Text PDF

Purpose: To determine the relationship between carotid intima-media thickness (IMT), coronary artery calcification (CAC), and myocardial blood flow (MBF) at rest and during vasomotor stress in type 2 diabetes mellitus (DM).

Methods: In 68 individuals, carotid IMT was measured using high-resolution vascular ultrasound, while the presence of CAC was determined with electron beam tomography (EBT). Global and regional MBF was determined in milliliters per gram per minute with (13)N-ammonia and positron emission tomography (PET) at rest, during cold pressor testing (CPT), and during adenosine (ADO) stimulation.

View Article and Find Full Text PDF

Low-intensity resistance exercise training combined with blood flow restriction (REFR) increases muscle size and strength as much as conventional resistance exercise with high loads. However, the cellular mechanism(s) underlying the hypertrophy and strength gains induced by REFR are unknown. We have recently shown that both the mammalian target of rapamycin (mTOR) signaling pathway and muscle protein synthesis (MPS) were stimulated after an acute bout of high-intensity resistance exercise in humans.

View Article and Find Full Text PDF

The mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are important nutrient- and energy-sensing and signalling proteins in skeletal muscle. AMPK activation decreases muscle protein synthesis by inhibiting mTOR signalling to regulatory proteins associated with translation initiation and elongation. On the other hand, essential amino acids (leucine in particular) and insulin stimulate mTOR signalling and protein synthesis.

View Article and Find Full Text PDF

Muscle protein metabolism is resistant to insulin's anabolic effect in healthy older subjects. This is associated with reduced insulin vasodilation. We hypothesized that aerobic exercise restores muscle protein anabolism in response to insulin by improving vasodilation in older subjects.

View Article and Find Full Text PDF

Purpose: We investigated the intraobserver reproducibility of myocardial blood flow (MBF) measurements with PET at rest and during cold pressor test (CPT), and the interobserver agreement.

Methods: Twenty normal volunteers were studied. Using (13)N-ammonia, MBF was measured at rest and during CPT and measurement was repeated in a 1-day session (short-term reproducibility; SR).

View Article and Find Full Text PDF

Sexual dimorphism in skeletal muscle mass is apparent, with men having more muscle mass and larger individual muscle cells. However, no sex-based differences have been detected in blood forearm phenylalanine turnover, although whole body leucine oxidation has been reported to be greater in men than in women. We hypothesized that sex differences in intracellular amino acid turnover may account for these discrepancies, with men having a higher intracellular turnover than women.

View Article and Find Full Text PDF

Resistance exercise is a potent stimulator of muscle protein synthesis and muscle cell growth, with the increase in protein synthesis being detected within 2-3 h post-exercise and remaining elevated for up to 48 h. However, during exercise, muscle protein synthesis is inhibited. An increase in AMP-activated protein kinase (AMPK) activity has recently been shown to decrease mammalian target of rapamycin (mTOR) signalling to key regulators of translation initiation.

View Article and Find Full Text PDF

Insulin promotes muscle anabolism, but it is still unclear whether it stimulates muscle protein synthesis in humans. We hypothesized that insulin can increase muscle protein synthesis only if it increases muscle amino acid availability. We measured muscle protein and amino acid metabolism using stable-isotope methodologies in 19 young healthy subjects at baseline and during insulin infusion in one leg at low (LD, 0.

View Article and Find Full Text PDF

Type 2 diabetes (T2DM) subjects failing diet treatment are characterized by hyperinsulinemia and insulin resistance leading to fasting and postprandial hyperglycemia and hyperlipidemia. Energy is essential for allowing the process of protein synthesis to proceed. Additionally, insulin can stimulate protein synthesis in human muscle.

View Article and Find Full Text PDF

Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 +/- 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 +/- 3 kcal/h, P < 0.

View Article and Find Full Text PDF