Publications by authors named "Jerry W Shan"

An unresolved challenge in nanofluidics is tuning ion selectivity and hydrodynamic transport in pores, particularly for those with diameters larger than a nanometer. In contrast to conventional strategies that focus on changing surface functionalization or confinement degree by varying the radial dimension of the pores, we explore a unique approach for manipulating ion selectivity and hydrodynamic flow enhancement by externally coating single-walled carbon nanotubes (SWCNTs) with a few layers of hexagonal boron nitride (h-BN). For van der Waals heterostructured BN-SWCNTs, we observed a 9-fold increase in cation selectivity for K versus Cl compared to pristine SWCNTs of the same 2.

View Article and Find Full Text PDF

Electrospray deposition (ESD) is a promising technique for depositing micro-/nano-scale droplets and particles with high quality and repeatability. It is particularly attractive for surface coating of costly and delicate biomaterials and bioactive compounds. While high efficiency of ESD has only been successfully demonstrated for spraying surfaces larger than the spray plume, this work extends its utility to smaller surfaces.

View Article and Find Full Text PDF

Small-diameter carbon nanotubes (CNTs) have outstanding mass-transport properties, especially enhanced water flow. Here, we report on water transport through the first macroscopic membranes with vertically oriented, subnanometer (0.8 nm) CNT pores, made by a scalable, solution-based method with electric-field alignment of bulk-grown single-wall CNTs (SWCNTs).

View Article and Find Full Text PDF

Current therapeutic innovations, such as CAR-T cell therapy, are heavily reliant on viral-mediated gene delivery. Although efficient, this technique is accompanied by high manufacturing costs, which has brought about an interest in using alternative methods for gene delivery. Electroporation is an electro-physical, non-viral approach for the intracellular delivery of genes and other exogenous materials.

View Article and Find Full Text PDF

This work reports a suction-based cutaneous delivery method for in vivo DNA transfection. Following intradermal Mantoux injection of plasmid DNA in a rat model, a moderate negative pressure is applied to the injection site, a technique similar to Chinese báguàn and Middle Eastern hijama cupping therapies. Strong GFP expression was demonstrated with pEGFP-N1 plasmids where fluorescence was observed as early as 1 hour after dosing.

View Article and Find Full Text PDF

The mechanical behavior and cortical tension of single cells are analyzed using electrodeformation relaxation. Four types of cells, namely, MCF-10A, MCF-7, MDA-MB-231, and GBM, are studied, with pulse durations ranging from 0.01 to 10 s.

View Article and Find Full Text PDF

Effective methods are needed to fabricate the next generation of high-performance graphene-reinforced polymer matrix composites (G-PMCs). In this work, a versatile and fundamental process is demonstrated to produce high-quality graphene-polymethylmethacrylate (G-PMMA) composites via in situ shear exfoliation of well-crystallized graphite particles loaded in highly-viscous liquid PMMA/acetone solutions into graphene nanoflakes using a concentric-cylinder shearing device. Unlike other methods where graphene is added externally to the polymer and mixed, our technique is a single step process where as-exfoliated graphene can bond directly with the polymer with no contamination/handling.

View Article and Find Full Text PDF

Electroporation is an electro-physical, non-viral approach to perform DNA, RNA, and protein transfections of cells. Upon application of an electric field, the cell membrane is compromised, allowing the delivery of exogenous materials into cells. Cell viability and electro-transfection efficiency (eTE) are dependent on various experimental factors, including pulse waveform, vector concentration, cell type/density, and electroporation buffer properties.

View Article and Find Full Text PDF

2D layered nanomaterials have attracted considerable attention for their potential for highly efficient separations, among other applications. Here, a 2D lamellar membrane synthesized using hexagonal boron nitride nanoflakes (h-BNF) for highly efficient ion separation is reported. The ion-rejection performance and the water permeance of the membrane as a function of the ionic radius, ion valance, and solution pH are investigated.

View Article and Find Full Text PDF

Efficient characterization of semiconductor nanowires having complex dopant profiles or heterostructures is critical to fully understand these materials and the devices built from them. Existing electrical characterization techniques are slow and laborious, particularly for multisegment nanowires, and impede the statistical understanding of highly variable samples. Here, it is shown that electro-orientation spectroscopy (EOS)-a high-throughput, noncontact method for statistically characterizing the electrical properties of entire nanowire ensembles-can determine the conductivity and dimensions of two distinct segments in individual Si nanowires with axially encoded dopant profiles.

View Article and Find Full Text PDF

The automated sorting and positioning of nanowires and nanotubes is essential to enabling the scalable manufacturing of nanodevices for a variety of applications. However, two fundamental challenges still remain: (i) automated placement of individual nanostructures in precise locations, and (ii) the characterization and sorting of highly variable nanomaterials to construct well-controlled nanodevices. Here, we propose and demonstrate an integrated, electric-field based method for the simultaneous automated characterization, manipulation, and assembly of nanowires (ACMAN) with selectable electrical conductivities into nanodevices.

View Article and Find Full Text PDF

The alignment of hexagonal boron-nitride nanotubes (BNNTs) in aqueous KCl solutions under spatially uniform electric fields was examined experimentally, using direct optical visualization to probe the orientation dynamics of individual BNNTs for different electric-field frequencies. Different from most previously studied nanowires and nanotubes, BNNTs are wide-bandgap materials which are essentially insulating at room temperature. We analyze the electro-orientation of BNNTs in the general context of polarizable cylindrical particles in liquid suspensions, whose behavior can fall into different regimes, including alignment due to Maxwell-Wagner induced dipoles at high frequencies, and alignment due to fluid motion of the electrical double layer around the particles at lower frequencies.

View Article and Find Full Text PDF

Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies.

View Article and Find Full Text PDF

Nanowires of the same composition, and even fabricated within the same batch, often exhibit electrical conductivities that can vary by orders of magnitude. Unfortunately, existing electrical characterization methods are time-consuming, making the statistical survey of highly variable samples essentially impractical. Here, we demonstrate a contactless, solution-based method to efficiently measure the electrical conductivity of 1D nanomaterials based on their transient alignment behavior in ac electric fields of different frequencies.

View Article and Find Full Text PDF

Electroporation is of interest for many drug-delivery and gene-therapy applications. Prior studies have shown that a two-pulse-electroporation protocol consisting of a short-duration, high-voltage first pulse followed by a longer, low-voltage second pulse can increase delivery efficiency and preserve viability. In this work the effects of the field strength of the first and second pulses and the inter-pulse delay time on the delivery of two different-sized Fluorescein-Dextran (FD) conjugates are investigated.

View Article and Find Full Text PDF

The efficacy of electroporation is known to vary significantly across a wide variety of biological research and clinical applications, but as of this writing, a generalized approach to simultaneously improve efficiency and maintain viability has not been available in the literature. To address that discrepancy, we here outline an approach that is based on the mapping of the scaling relationships among electroporation-mediated molecular delivery, cellular viability, and electric pulse parameters. The delivery of Fluorescein-Dextran into 3T3 mouse fibroblast cells was used as a model system.

View Article and Find Full Text PDF

The transport mechanisms in electroporation-mediated molecular delivery are experimentally investigated and quantified. In particular, the uptake of propidium iodide (PI) into single 3T3 fibroblasts is investigated with time- and space-resolved fluorescence microscopy, and as a function of extracellular buffer conductivity. During the pulse, both the peak and the total integrated fluorescence intensity exhibit an inverse correlation with extracellular conductivity.

View Article and Find Full Text PDF

When subject to applied electric pulses, a lipid membrane exhibits complex responses including electrodeformation and electroporation. In this work, the electrodeformation of giant unilamellar vesicles under strong dc electric fields was investigated. Specifically, the degree of deformation was quantified as a function of the applied field strength and the electrical conductivity ratio of the fluids inside and outside of the vesicles.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionluun8p96kucs73if0kqcesdtjkghq75t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once