Although axotomized neurons retain the ability to initiate the formation of growth cones and attempt to regenerate after spinal cord injury, the scar area formed as a result of the lesion in most adult mammals contains a variety of reactive cells that elaborate multiple extracellular matrix and enzyme components that are not suitable for regrowth . Newly migrating axons in the vicinity of the scar utilize upregulated LAR family receptor protein tyrosine phosphatases, such as PTPσ, to associate with extracellular chondroitin sulphate proteoglycans (CSPGs), which have been discovered to tightly entrap the regrowing axon tip and transform it into a dystrophic non-growing endball. The scar is comprised of two compartments, one in the lesion penumbra, the glial scar, composed of reactive microglia, astrocytes and OPCs; and the other in the lesion epicenter, the fibrotic scar, which is made up of fibroblasts, pericytes, endothelial cells and inflammatory cells.
View Article and Find Full Text PDFJ Neurotrauma
December 2023
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection.
View Article and Find Full Text PDFIn addition to neuroprotective strategies, neuroregenerative processes could provide targets for stroke recovery. However, the upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) impedes innate regenerative efforts. Here, we examine the regulatory role of PTPσ (a major proteoglycan receptor) in dampening post-stroke recovery.
View Article and Find Full Text PDFNeurons must function for decades of life, but how these non-dividing cells are preserved is poorly understood. Using mouse serotonin (5-HT) neurons as a model, we report an adult-stage transcriptional program specialized to ensure the preservation of neuronal connectivity. We uncover a switch in Lmx1b and Pet1 transcription factor function from controlling embryonic axonal growth to sustaining a transcriptomic signature of 5-HT connectivity comprising functionally diverse synaptic and axonal genes.
View Article and Find Full Text PDFBackground: Histomorphometry quantitatively evaluates nerve regeneration. Total myelinated fiber count (TMFC) is most accurately obtained manually across full nerve cross-sections, but most researchers opt for automated, sampled analysis. Few of the numerous techniques available have been validated.
View Article and Find Full Text PDFSevere spinal cord injury causes permanent loss of function and sensation throughout the body. The trauma causes a multifaceted torrent of pathophysiological processes which ultimately act to form a complex structure, permanently remodeling the cellular architecture and extracellular matrix. This structure is traditionally termed the glial/fibrotic scar.
View Article and Find Full Text PDFIntroduction: Rat sciatic nerve injury (PNR) is the most utilized model in studies on peripheral nerve regeneration. However, large animal models are increasingly favored based on the assumption that nerve regeneration in rodents achieves more favorable outcomes than in humans. The purpose of this meta-analysis was to investigate which rat PNR models are more stringent and should be used before utilizing large animal experimentation.
View Article and Find Full Text PDFProteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell's degradative and autophagic processes, and are vital for normal lysosomal function.
View Article and Find Full Text PDFChondroitin sulfate proteoglycans (CSPGs), extracellular matrix molecules that increase dramatically following a variety of CNS injuries or diseases, have long been known for their potent capacity to curtail cell migrations as well as axon regeneration and sprouting. The inhibition can be conferred through binding to their major cognate receptor, Protein Tyrosine Phosphatase Sigma (PTPσ). However, the precise mechanisms downstream of receptor binding that mediate growth inhibition have remained elusive.
View Article and Find Full Text PDFFormation of long-range axons occurs over multiple stages of morphological maturation. However, the intrinsic transcriptional mechanisms that temporally control different stages of axon projection development are unknown. Here, we addressed this question by studying the formation of mouse serotonin (5-HT) axons, the exemplar of long-range profusely arborized axon architectures.
View Article and Find Full Text PDFIntravital imaging of the immune system is a powerful technique for studying biology of the immune response in the spinal cord using a variety of disease models ranging from traumatic injury to autoimmune disorders. Here, we will discuss specific technical aspects as well as many intriguing biological phenomena that have been revealed with the use of intravital imaging for investigation of the immune system in the spinal cord. We will discuss surgical techniques for exposing and stabilizing the spine that are critical for obtaining images, visualizing immune and CNS cells with genetically expressed fluorescent proteins, fluorescent labeling techniques and briefly discuss some of the challenges of image analysis.
View Article and Find Full Text PDFMyelin is the protective sheath that surrounds nerves in vertebrates to protect axons, which thereby facilitates impulse conduction. Damage to myelin is associated with many neurodegenerative diseases such as multiple sclerosis and also includes spinal cord injury (SCI). The small size of the spinal cord poses formidable challenges to in vivo monitoring of myelination, which we investigated via conducting a structure-activity relationship study to determine the optimum positron-emitting agent to use for imaging myelin using positron emission tomography (PET).
View Article and Find Full Text PDFFollowing spinal cord injury (SCI), the population of mature oligodendrocytes undergoes substantial cell death; promoting their preservation and replacement is a viable strategy for preserving axonal integrity and white matter repair in the injured spinal cord. Dramatic upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) is shown to pose an obstacle to endogenous repair processes, and targeting CSPGs improves functional recovery after SCI. However, the cellular and molecular mechanisms underlying the inhibitory effects of CSPGs remain largely undefined.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is characterized by focal CNS inflammation leading to the death of oligodendrocytes (OLs) with subsequent demyelination, neuronal degeneration, and severe functional deficits. Inhibitory chondroitin sulfate proteoglycans (CSPGs) are increased in the extracellular matrix in the vicinity of MS lesions and are thought to play a critical role in myelin regeneration failure. We here show that CSPGs curtail remyelination through binding with their cognate receptor, protein tyrosine phosphatase σ (PTPσ) on oligodendrocyte progenitor cells (OPCs).
View Article and Find Full Text PDFSevered axon tips reform growth cones following spinal cord injury that fail to regenerate, in part, because they become embedded within an inhibitory extracellular matrix. Chondroitin sulfate proteoglycans (CSPGs) are the major axon inhibitory matrix component that is increased within the lesion scar and in perineuronal nets around deafferented neurons. We have recently developed a novel peptide modulator (intracellular sigma peptide) of the cognate receptor of CSPGs, protein tyrosine phosphatase σ (RPTPσ), which has been shown to markedly improve sensorimotor function, micturition, and coordinated locomotor behavior in spinal cord contused rats.
View Article and Find Full Text PDFBackground: Traumatic spinal cord injury (SCI) results in upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia that impedes repair and regeneration in the spinal cord. Degradation of CSPGs is known to be beneficial in promoting endogenous repair mechanisms including axonal sprouting/regeneration, oligodendrocyte replacement, and remyelination, and is associated with improvements in functional outcomes after SCI. Recent evidence suggests that CSPGs may regulate secondary injury mechanisms by modulating neuroinflammation after SCI.
View Article and Find Full Text PDFSince no approved therapies to restore mobility and sensation following spinal cord injury (SCI) currently exist, a better understanding of the cellular and molecular mechanisms following SCI that compromise regeneration or neuroplasticity is needed to develop new strategies to promote axonal regrowth and restore function. Physical trauma to the spinal cord results in vascular disruption that, in turn, causes blood-spinal cord barrier rupture leading to hemorrhage and ischemia, followed by rampant local cell death. As subsequent edema and inflammation occur, neuronal and glial necrosis and apoptosis spread well beyond the initial site of impact, ultimately resolving into a cavity surrounded by glial/fibrotic scarring.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
Central neural networks operate continuously throughout life to control respiration, yet mechanisms regulating ventilatory frequency are poorly understood. Inspiration is generated by the pre-Bötzinger complex of the ventrolateral medulla, where it is thought that excitation increases inspiratory frequency and inhibition causes apnea. To test this model, we used an in vitro optogenetic approach to stimulate select populations of hindbrain neurons and characterize how they modulate frequency.
View Article and Find Full Text PDFSpinal cord injury (SCI) above cervical level 4 disrupts descending axons from the medulla that innervate phrenic motor neurons, causing permanent paralysis of the diaphragm. Using an ex vivo preparation in neonatal mice, we have identified an excitatory spinal network that can direct phrenic motor bursting in the absence of medullary input. After complete cervical SCI, blockade of fast inhibitory synaptic transmission caused spontaneous, bilaterally coordinated phrenic bursting.
View Article and Find Full Text PDFEight weeks post contusive spinal cord injury, we built a peripheral nerve graft bridge (PNG) through the cystic cavity and treated the graft/host interface with acidic fibroblast growth factor (aFGF) and chondroitinase ABC (ChABC). This combinatorial strategy remarkably enhanced integration between host astrocytes and graft Schwann cells, allowing for robust growth, especially of catecholaminergic axons, through the graft and back into the distal spinal cord. In the absence of aFGF+ChABC fewer catecholaminergic axons entered the graft, no axons exited, and Schwann cells and astrocytes failed to integrate.
View Article and Find Full Text PDFMyelin pathology is present in many neurological conditions such as multiple sclerosis (MS) and traumatic spinal cord injury (SCI). To facilitate development of novel therapies aimed at myelin repair, we set out to develop imaging agents that permit direct quantification of myelination in vivo. In this work, we designed and synthesized a series of fluorescent fluorinated myelin imaging agents that can be used for in vivo positron emission tomography (PET) imaging combined with subsequent post-mortem fluorescent cryoimaging.
View Article and Find Full Text PDF