Publications by authors named "Jerry P George"

Objective: The aim of this study was to assess whether increased time from emergency department (ED) triage to appendectomy is associated with a greater risk of children developing appendiceal perforation.

Methods: We performed a multicenter retrospective cohort study of children younger than 18 years hospitalized with appendicitis. To avoid enrolling patients who had perforated prior to ED arrival, we included only children who had a computed tomography (CT) scan demonstrating nonperforated appendicitis.

View Article and Find Full Text PDF

Mesenchymal cell migration through a three-dimensional (3D) matrix typically involves major matrix remodeling. The direction of matrix deformation occurs locally in all three dimensions, which cannot be measured by current techniques. To probe the local, 3D, real-time deformation of a collagen matrix during tumor cell migration, we developed an assay whereby matrix-embedded beads are tracked simultaneously in all three directions with high resolution.

View Article and Find Full Text PDF

During vasculogenesis and angiogenesis, endothelial cell responses to growth factors are modulated by the compositional and mechanical properties of a surrounding three-dimensional (3D) extracellular matrix (ECM) that is dominated by either cross-linked fibrin or type I collagen. While 3D-embedded endothelial cells establish adhesive interactions with surrounding ligands to optimally respond to soluble or matrix-bound agonists, the manner in which a randomly ordered ECM with diverse physico-mechanical properties is remodeled to support blood vessel formation has remained undefined. Herein, we demonstrate that endothelial cells initiate neovascularization by unfolding soluble fibronectin (Fn) and depositing a pericellular network of fibrils that serve to support cytoskeletal organization, actomyosin-dependent tension, and the viscoelastic properties of the embedded cells in a 3D-specific fashion.

View Article and Find Full Text PDF

Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna(-/-) MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope.

View Article and Find Full Text PDF

Vascular endothelial (VE) cadherin is the surface glycoprotein cadherin specific to the endothelium that mediates cell-cell adhesion and plays a major role in the remodeling, gating, and maturation of vascular vessels. To investigate the contribution of individual VE-cadherins to endothelial cell-cell interactions and investigate whether different classical cadherins display different kinetics and micromechanical properties, we characterize the binding properties of VE-cadherin/VE-cadherin bonds at single-molecule resolution and in living human umbilical vein endothelial cells (HUVECs). Our single-molecule force spectroscopy measurements reveal that type II VE-cadherin molecules form bonds that are less prone to rupture and display a higher tensile strength than bonds formed by classical type I neuronal (N) cadherin and epithelial (E) cadherin.

View Article and Find Full Text PDF